Math428: Problem Set #2

1. Write the differential equation

\[y'' + (y')^2 / y - \sin(y) = 0, \quad y(0) = 1, \quad y'(0) = 1 \]

as a first order system of equations. Note: it will not necessarily be linear. Suggest a general class of \(n \)th-order nonlinear differential equations that can be converted to a first order system. Try to make your class as broad as possible.

2. Using Euler’s method, solve

\[y' = -y, \quad y(0) = 1 \]

for \(0 \leq t \leq 10 \) with step sizes of \(h = 0.5, 0.75, 1, 1.5, 2, 2.5 \). Plot the errors in the numerical computation as a function of time for the different step sizes all on the same graph. (Make sure your plot has a legend.) How does the computed solution compare to the exact solution for different values of \(h \)? Would a Taylor series method improve this computation at all?

3. Repeat problem #2 using the backward Euler’s method. Explain the difference in behavior by examining the numerical method as a difference equation.

4. Repeat problem #2 for the differential equation

\[y' = -\left(1 + \frac{9}{10} \cos(t)\right)y, \quad y(0) = 1 \]

for \(0 \leq t \leq 20 \). If you cannot find an exact solution, compute a reference solution by setting \(h \) to be very, very small. Explain the difference in behavior for different values of \(h \) by examining the varying decay rate of the exact system as a function of time.