1. **Review problems:**
 - from Hw 1: # 4, 6-10
 - from Hw 2 # 1-4, 6a, 7
 - from Chapter 6, PMA #4, 5, 7, 8, 11, 15.

2. **Know** the proofs of the following theorems:
 - The Riemann Integral 6.6, 6.8, 6.20, 6.21.
 - The union of two measurable sets is a measurable set (using the definition of measurable set).
 - The sums and the products of measurable functions are measurable functions.

3. **Know Definitions, Theorems, Propositions, Examples** as presented in class.
 Do not miss:
 - The Riemann Integral (not the Stieltjes part). 6.1, 6.3-6.7, 6.11-6.13
 - Integration and Differentiation, the Fundamental Theorem of Calculus; 6:20, 6:2, 6:22.
 - Outer measure on \(\mathbb{R} \): definition and properties.
 - Measurable sets: definition and properties.
 - The Lebesque measure on \(\mathbb{R} \): definition and properties.
 - There are non-measurable subsets of \(\mathbb{R} \).
 - The characterization of measurable functions.
 - Properties of of measurable functions.
 - Measurability of limits of sequences of measurable functions.

4. **Decide if** the following statements are **True or False** and **justify** your answer:
1) If \(f, g : [a, b] \to \mathbb{R} \) are functions such that \(|f(x)| \leq g(x) \leq 1 \) for all \(x \in [a, b] \), and the function \(g \) is Riemann Integrable on \([a, b]\), then the function \(f \) is also Riemann Integrable on \([a, b]\).

2) If \(f : [a, b] \to [0, \infty) \) is Riemann Integrable on \([a, b]\), then the function \(\sqrt{f} \) is also Riemann Integrable on \([a, b]\).

3) A function that is zero except at 2015 points in \([0, 1]\) is Riemann Integrable.

4) Any function that is zero almost everywhere is Riemann Integrable.

5) If \(f : [a, b] \to [0, \infty) \) is such that \(f^3 \) is Riemann Integrable on \([a, b]\), then the function \(f \) is also Riemann Integrable on \([a, b]\).

6) If \(f : \mathbb{R} \to \mathbb{R} \) is measurable, then \(f^3 \) is also measurable.

7) The set \(\mathbb{R} \setminus \mathbb{Q} \) is measurable.

8) Any measurably set of measure zero is countable.

9) Any subset of a measurable set is measurable.

10) If \(\{E_n\} \) is a sequence of measurable sets such that \(E_{n+1} \subset E_n, n = 1, 2, \ldots \), then \(m(\cap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} m(E_n) \).

11) There exist two subsets \(B \) and \(C \) of \(\mathbb{R} \) such that \(m^*(B \cup C) < m^*(B) + m^*(C) \).

12) If \(f : \mathbb{R} \to \mathbb{R} \) is measurable, and \(g : \mathbb{R} \to \mathbb{R} \) is continuous then \(g \circ f \) is measurable.

13) If \(f : \mathbb{R} \to \mathbb{R} \) is measurable, then \(|f| \) is also measurable.

14) \(\lim_{n \to \infty} 2^n \sum_{k=1}^{2^n} \frac{1}{k^2 + 4^n} = \frac{\pi}{4} \).

15) Any bounded measurable function \(f : [a, b] \to \mathbb{R} \) is Riemann integrable.

16) There are countable measurable subsets of \(\mathbb{R} \) that are not measurable.

17) Any monotonic function \(f : \mathbb{R} \to \mathbb{R} \) is measurable.

18) If \(f, g : \mathbb{R} \to \mathbb{R} \) and \(f = g \text{ a.e.} \) and \(g \) is continuous then \(f \) is measurable.

19) If \(f, g : [a, b] \to \mathbb{R}, f = g \text{ a.e.} \) and \(g \) is Riemann integrable then \(f \) is Riemann integrable.

20) Any unbounded measurable subset of \(\mathbb{R} \) has the Lebesgue measure \(\infty \).

21) \(m([0, 1] \cap (\mathbb{R} \setminus \mathbb{Q})) = 1 \).