Homework Set 4 Solutions

1. (4 points) Use d’Alembert’s formula to solve

\[\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0, \quad u(x,0) = 0, \quad \frac{\partial u}{\partial t}(x,0) = \delta(x - \xi) \]

in the form

\[u(x,t) = \frac{H(x + ct) - H(x - ct)}{2c}. \]

Solution. Plugging into d’Alembert’s formula, we have

\[u(x,t) = \frac{1}{2c} \int_{x-ct}^{x+ct} \delta(y - \xi) \, dy = \begin{cases}
1/2c, & x - ct < \xi < x + ct, \\
0, & \text{else}.
\end{cases} \]

\[= \begin{cases}
1/2c, & \xi - ct < x < \xi + ct, \\
0, & \text{else}.
\end{cases} \]

If \(x < \xi - ct \), we note that both \(H(x-(\xi-ct)) \) and \(H(x-(\xi-ct)) \) are zero, so their difference is zero. Similarly, if \(x > \xi - ct \), we note that both \(H(x-(\xi-ct)) \) and \(H(x-(\xi-ct)) \) are one, so their difference is zero. Their difference is nonzero in the interval where \(u \) is nonzero, so we have

\[u(x,t) = \frac{H(x - \xi + ct) - H(x - \xi - ct)}{2c}. \]

2. Consider the following problem:

\[\frac{\partial^2 \psi}{\partial t^2} + 2k \frac{\partial \psi}{\partial t} = \frac{\partial^2 \psi}{\partial x^2}, \quad k > 0, \quad x \in [0,1]; \quad \frac{\partial \psi}{\partial x}(0,t) = \psi(1,t) = 0. \quad (4.1a) \]

(a) (9 points) Obtain the “normal modes” for (4.1a). Explain how their behavior differs from those of true normal modes. Be sure to consider what happens to the normal modes as \(k \) increases. Don’t miss any special values.

Solution. Separating variables by letting \(\psi(x,t) = \phi_n(x)T_n(t) \), we obtain

\[\phi_n T_n'' + 2k \phi_n T_n' = \phi_n'' T_n, \]

\[\phi_n'' = \frac{T_n'' + kT_n'}{T_n} = -\lambda_n^2. \]

\[\phi_n'' + \lambda_n^2 \phi_n = 0, \quad (A.1) \]

\[T_n'' + 2k T_n' + \lambda_n^2 T_n = 0. \quad (A.2) \]
where the right-hand side has been chosen for simplicity. Since the boundary conditions for (A.1) are given by
\[\phi_n'(0) = \phi_n(1) = 0, \]
we see that the solution to (A.1) and the boundary condition at \(x = 0 \) is given by \(\cos \lambda_n x \).

Then satisfying the boundary condition at \(x = 1 \), we have
\[-\lambda_n \sin \lambda_n = 0 \implies \lambda_n = \left(n + \frac{1}{2} \right) \pi \]
\[\phi_n(x) = \cos \left(n + \frac{1}{2} \right) \pi x, \quad n > 0. \]

Making this substitution into (A.2), we obtain
\[T'' + 2kT' + \left(n + \frac{1}{2} \right) \pi^2 T = 0 \]
\[T_n(t) = e^{\alpha_n t} \implies \alpha_n^2 + 2k\alpha_n + \left(n + \frac{1}{2} \right) \pi^2 = 0 \]
\[\alpha_n = -k \pm \sqrt{\left(n + \frac{1}{2} \right) \pi^2 - k^2}, \]
\[T_n(t) = e^{-kt} [c_1 \sin(\omega_n t) + c_2 \cos(\omega_n t)], \quad (B.1) \]
\[\omega_n = \sqrt{\left(n + \frac{1}{2} \right) \pi^2 - k^2}. \quad (B.2) \]

Therefore, the “normal modes” are given by
\[e^{-kt} \cos \left(\left(n + \frac{1}{2} \right) \pi x \right) \sin(\omega_n(t - t_n)). \]

These are not true normal modes in that all solutions decay as \(t \to \infty \). Also, we note that as \(k \) increases above \(n\pi \), then \(\omega_j \) is imaginary for \(j \leq n \). Thus those modes become pure exponentials of the following form:
\[e^{-kt} \cos \left(\left(n + \frac{1}{2} \right) \pi x \right) \sinh(r_n(t - t_n)), \quad r_n = \sqrt{k^2 - \left(n + \frac{1}{2} \right) \pi^2}. \]

Thus these modes do not oscillate with time but decay exponentially fast (since \(r_n < k \)). In addition, if \(k = (n+1/2)\pi \), we have a double root of \(\alpha_n = -kt \), which leads to a solution
\[T_n(t) = e^{-kt}(c_1 + c_2t). \]
(b) (2 points) Explain why (4.1a) models wave propagation with damping.

solution. Since the oscillations always decay to zero as \(t \to \infty \), this equation models a damped physical process.

(c) (4 points) Show that the solution to (4.1a) with

\[\psi(x,0) = f(x), \quad \frac{\partial \psi}{\partial t}(x,0) = g(x) \] \hspace{1cm} (4.1b)

is usually given by

\[\psi(x,t) = \sum_{n=0}^{\infty} e^{-kt} \cos \left(\left(n + \frac{1}{2} \right) \pi x \right) \left[f_n \cos(\omega_n t) + \frac{g_n + kf_n}{\omega_n} \sin(\omega_n t) \right], \]

and write the expressions for \(f_n \), \(g_n \), and \(\omega_n \).

solution. Then by standard Sturm-Liouville theory, we know that the boundary conditions for (A.2) are given by

\[T_n(0) = f_n, \quad T'_n(0) = g_n, \] \hspace{1cm} (C)

where

\[f_n = \frac{\langle f, \phi_n \rangle}{\| \phi_n \|^2}. \]

Here we interpret “usually” to mean the case where \(k \neq (n + 1/2)\pi \). (Here we include the case where \(\omega_n \) is imaginary.) Calculating the denominator, we have

\[\| \phi_n^2 \| = \int_0^1 \cos^2 \left(\left(n + \frac{1}{2} \right) \pi x \right) dx = \int_0^1 \frac{1 + \cos((2n + 1)\pi x)}{2} dx \\
= \left[\frac{x}{2} + \frac{\sin((2n + 1)\pi x)}{4} \right]_0^1 = \frac{1}{2}, \]

\[f_n = 2 \int_0^1 f(x) \cos \left(\left(n + \frac{1}{2} \right) \pi x \right) dx, \]
\[g_n = 2 \int_0^1 g(x) \cos \left(\left(n + \frac{1}{2} \right) \pi x \right) dx. \]

Substituting (B.1) into (C), we obtain

\[T_n(0) = c_2 = f_n \]
\[T'_n(0) = -kc_2 + c_1 \omega_n = g_n \]
\[c_1 = \frac{g_n + kf_n}{\omega_n} \]
\[T_n(t) = e^{-kt} \left[\frac{g_n + kf_n}{\omega_n} \sin(\omega_n t) + f_n \cos(\omega_n t) \right], \]
from which our result immediately follows.

3. A membrane occupies the quarter-annular region $\tilde{r} \in [r_{\text{in}}, r_{\text{out}}]$, $\theta \in [0, \pi/2]$ (see figure). The membrane is free on the edges of constant θ and clamped at the edges of constant r. Initially the membrane is undisturbed, and is then given a velocity of

$$\frac{\partial \tilde{\psi}}{\partial \tilde{t}}(\tilde{r}, \theta, 0) = \psi_0 \tilde{f}(\tilde{r}).$$

(a) (6 points) Derive the following dimensionless governing equation for the displacement $\psi(r, \theta, t)$:

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = \frac{\partial^2 \psi}{\partial \tilde{t}^2}, \quad r \in [1, R], (4.3a)$$

and write the expressions for f and R.

Solution. From notes in class, we have that the dimensional wave equation is given by

$$c^2 \left[\frac{1}{\tilde{r}} \frac{\partial}{\partial \tilde{r}} \left(\tilde{r} \frac{\partial \tilde{\psi}}{\partial \tilde{r}} \right) + \frac{1}{\tilde{r}^2} \frac{\partial^2 \tilde{\psi}}{\partial \tilde{\theta}^2} \right] = \frac{\partial^2 \tilde{\psi}}{\partial \tilde{t}^2}, \quad c^2 = \frac{T_0}{\rho}. \quad (D)$$

Motivated by the right-hand side of (4.2), the domain in (4.3a), and the desire to eliminate c^2, we let

$$r = \frac{\tilde{r}}{r_{\text{in}}}, \quad \psi(r, \theta, t) = \frac{\psi(\tilde{r}, \theta, \tilde{t})}{\psi_0}, \quad t = \frac{\tilde{t}}{r_{\text{in}} \sqrt{\frac{T_0}{\rho}}} = \frac{\tilde{t}}{r_{\text{in}}},$$

in (D) to obtain

$$\psi_0 \frac{T_0}{\rho r_{\text{in}}^2} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} \right] = \psi_0 \frac{T_0}{\rho r_{\text{in}}^2} \frac{\partial^2 \psi}{\partial \tilde{t}^2}, \quad r \in [1, r_{\text{out}}/r_{\text{in}}].$$

Therefore, by letting

$$R = \frac{r_{\text{out}}}{r_{\text{in}}},$$
we obtain (4.3a). Making the substitutions into (4.2), we obtain
\[\psi_0 \frac{1}{r_{in}} \sqrt{\frac{T_0}{\rho}} \frac{\partial \psi}{\partial t}(r, \theta, 0) = \psi_0 \tilde{f}(\tilde{r}). \]

Therefore, by letting
\[f(r) = r_{in} \tilde{f}(\tilde{r}) \sqrt{\frac{\rho}{T_0}} = \frac{r_{in} \tilde{f}(\tilde{r})}{c}, \]
(4.3b) immediately follows.

(b) (4 points) Write down the other boundary conditions needed to solve the problem.

Solution. The edges of constant \(\theta \) are free, which means that there is no force applied, so we have
\[\frac{\partial \psi}{\partial \theta}(r, 0, t) = \frac{\partial \psi}{\partial \theta}(r, \pi/2, t) = 0. \]
(E.1)
The edges at \(r = 1 \) and \(r = R \) are clamped, so we have
\[\psi(1, \theta, t) = \psi(R, \theta, t) = 0. \]
(E.2)
Initially the membrane is quiescent, so
\[\psi(r, \theta, 0) = 0. \]
(E.3)

(c) (6 points) Show that the spatial eigenfunctions \(\phi_n(r) \) are given by
\[\phi_n(r) = J_0(\lambda_n)Y_0(\lambda_n) - J_0(\lambda_n)Y_0(\lambda_n), \]
\[J_0(\lambda_n)Y_0(\lambda_n) = J_0(R\lambda_n)Y_0(\lambda_n). \]

Explain why there is only a one-parameter family of eigenfunctions.

Solution. We note from (4.3b) and (E.1) that there is no \(\theta \)-dependence in the problem. Separating variables as in class by letting \(\psi(r, \theta, t) = \phi(r)T(t) \), we have
\[\frac{1}{r \phi} \frac{d}{dr} \left(r \phi \frac{d \phi'}{dr} \right) \frac{T''}{T} = -\lambda^2 \]
(F)
\[z^2 \frac{d^2 \phi}{dz^2} + z \frac{d \phi}{dz} + (z^2 - 0^2) \phi = 0, \quad z = r \lambda, \]
\[\phi(z) = c_1 J_0(z) + c_0 Y_0(z), \quad \phi(r) = c_1 J_0(r \lambda) + c_0 Y_0(r \lambda). \]
The boundary conditions at \(r = 1 \) and \(r = R \) are given by
\[\phi(1) = 0, \quad \phi(R) = 0. \]
Satisfying these conditions, we have
\[\phi(1) = \lambda [c_1 J_0(\lambda) + c_2 Y_0(\lambda)] = 0 \]
\[c_1 = -\frac{c_2 Y_0(\lambda)}{J_0(\lambda)}. \]

Letting \(c_2 = -J_0(\lambda) \) for simplicity, we have
\[\phi(r) = Y_0(\lambda) J_0(r\lambda) - J_0(\lambda) Y_0(r\lambda) \]
\[\phi(R) = \lambda [Y_0(\lambda) J_0(R\lambda) - J_0(\lambda) Y_0(R\lambda)] = 0. \]

With simple manipulations, these equations yield the desired result, keeping in mind that there will be an infinite number of eigenvalues which are indexed by \(n \). Since there is no \(\theta \)-dependence, there is no need to index the Bessel functions by their order.

(d) (5 points) Write the solution to the problem.

Solution. Solving the \(t \)-dependent part of (F), we have
\[T(t) = c_3 \sin \lambda_n t + c_4 \cos \lambda_n t. \]

The boundary conditions are given by
\[T_n(0) = 0, \quad T'_n(0) = f_n, \]
where
\[f_n = \frac{\langle f, \phi_n \rangle}{||\phi_n||^2}, \quad \langle f, \phi_n \rangle = \int_1^R r f(r) \phi_n(r) \, dr. \]

The solution of the above is
\[T_n(t) = \frac{f_n}{\lambda_n} \sin \lambda_n t \]
\[\psi(r, \theta, t) = \sum_{n=0}^{\infty} \frac{f_n}{\lambda_n} (\sin \lambda_n t) \phi_n(r). \]