Updates

1. The final exam will be held on Monday, Dec. 10 from 3:30–6:30 pm.

Homework Set 8

Read sections 7.2–7.4.1, 8.1, 8.4.

Shock Waves

1. Consider the following equation:

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \quad u(x, 0) = x - 2n, \quad x \in (2n - 1, 2n + 1). \tag{8.1}
\]

(a) (10 points) Construct the solution. Show that the shock positions are stationary, and the shock strength decays like \(t^{-1} \) as \(t \to \infty \).

(b) (4 points) Draw the characteristic diagram, indicating the position of the shocks.

(c) (4 points) Sketch \(u \) for various values of \(t \).

The Wave Equation

2. The telegraph equation has the form

\[
\frac{\partial^2 u}{\partial x^2} = LC \frac{\partial^2 u}{\partial t^2} + (RC + GL) \frac{\partial u}{\partial t} + RG u, \tag{8.2}
\]

where all the parameters are positive.

(a) (5 points) Let \(u = v(x, t)e^{\alpha t} \) and choose \(\alpha \) such that the differential equation for \(v \) has no \(\partial v/\partial t \) term.

(b) (3 points) Show (by calculation, NOT direct substitution) that if \(RC = GL \), your answer to (a) reduces to the standard wave equation for \(v \).

(c) (4 points) Show that a signal arriving at \(x = b \) is simply a damped version of a signal sent at \(x = 0 \).
The Navier-Stokes Equations

3. Consider the flow and density given by

\[x = a, \quad y = b + c \cos \omega t, \quad \rho = \frac{\rho_0}{1 + y^2}. \]

(8.3)

(a) (2 points) Show that the flow in (8.3) is not steady. Describe it.

(b) (3 points) Calculate \(\frac{D\rho}{Dt} \).

Conservation of Momentum

4. (5 points) Suppose that a fluid is in steady motion past a bounded obstacle, and further suppose that \(f \equiv 0 \). Let \(K \) be the force acting on the obstacle. Use the linear momentum transfer equation:

\[
\frac{d}{dt} \int_R \rho \mathbf{v} \, dV = \int_R \rho f \, dV + \int_{\partial R} [t - \rho \mathbf{v} \cdot (\mathbf{v} \cdot \mathbf{n})] \, dA,
\]

(8.4)

to deduce that

\[
K = \int_S [t - \rho \mathbf{v} \cdot (\mathbf{v} \cdot \mathbf{n})] \, dA,
\]

(8.5)

where \(S \) is any (imaginary) surface enclosing the obstacle. (In practice \(S \) is chosen to simplify calculations). Be sure to explain why the sign of \(K \) is as indicated.

(Hint: What is \(R \)?)