0. a10.1-6, 10.3-5, 8, 10,11, 14 (no MATLAB)

1. (2.2:a1) (1) Find $A = LU$ decomposition. (2) Use LU decomposition of A to solve $Ax = b$ in 2 steps. (3) Do GE without pivoting, to solve $Ax = b$ again.

 \[
 (A|b) = \begin{pmatrix}
 1 & 0 & 1 & 2 & | & 1 \\
 2 & -3 & 5 & -2 & | & -2 \\
 1 & -3 & 3 & -2 & | & 0 \\
 0 & 4 & -11/2 & 12 & | & 1
 \end{pmatrix}
 \]

 Hint: You may follow the method in the lecture – doing (3) first, then answering (1) & (2).

2. (a10.2) Do both methods: (1) Direct GE with PP. (2) Find $PA = LU$ and use it and 2-step substitution to solve $Ax = b$.

 \[
 A = \begin{pmatrix}
 4 & 2 & 0 \\
 4 & 4 & 2 \\
 2 & 2 & 3
 \end{pmatrix}, \quad b = \begin{pmatrix}
 2 \\
 4 \\
 6
 \end{pmatrix}
 \]

3. (a10.4) Solve the following system $(A|b)$

 (a) Find $PA = LU$ decomposition.
 (b) Find $A = LU$ decomposition.
 (c) GE without pivoting, (no row switching, no row multiplication)
 (d) Use $A = LU$ and 2-step substitution method.
 (e) GE with partial pivoting, (row pivoting every step)
 (f) Use $PA = LU$ and 3-step substitution method.

 \[
 \begin{pmatrix}
 1 & 2 & 3 & | & 2 \\
 2 & 1 & -1 & | & 0 \\
 3 & 0 & -3 & | & 0
 \end{pmatrix}
 \]

4. (a10.3) Solve the following system $(A|b)$ by GE with

 (a) without pivoting, (no row switching, no row multiplication). Then show the $A = LU$ decomposition and 2-step substitution method for solving the problem.
 (b) with partial pivoting, (row pivoting every step) Then show the $PA = LU$ decomposition and 3-step substitution method for solving the problem.

 \[
 \begin{pmatrix}
 1 & -3 & 2 & | & 5 \\
 -2 & 0 & 2 & | & 2 \\
 3 & -1 & -1 & | & 0
 \end{pmatrix}
 \]

5. (a10.5) Find the Cholesky factorization and use it to solve $Ax = b$ by two-step substitution.

 \[
 A = \begin{pmatrix}
 4 & 0 & -2 \\
 0 & 1 & 1 \\
 -2 & 1 & 3
 \end{pmatrix}, \quad b = \begin{pmatrix}
 4 \\
 2 \\
 0
 \end{pmatrix}
 \]

6. (a10.6) Find the Cholesky factorization $A = R^T R$ and use it to solve $Ax = b$ by two-step substitution.

 \[
 A = \begin{pmatrix}
 16 & 4 & 0 & -4 \\
 4 & 5 & 2 & -1 \\
 0 & 2 & 2 & -2 \\
 -4 & -1 & -2 & 6
 \end{pmatrix}, \quad b = \begin{pmatrix}
 8 \\
 2 \\
 -4 \\
 3
 \end{pmatrix}
 \]