An inequality involving a triangle and an interior point and its application
AIMS AND SCOPE
Mathematical Inequalities & Applications (MIA, Math. Inequal. Appl.) brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time MIA will publish invited survey articles. Short notes with interesting results or open problems will also be accepted.

MIA is published quarterly, in January, April, July and October.

SUBMISSION
Manuscripts should be submitted electronically in PostScript or Adobe Acrobat PDF format to the MIA Editorial Office through MIA page: www.ele-math.com or by e-mail mia@ele-math.com

The author who submitted the article for publication will be denoted as a corresponding author. He/She manages all communication and correspondence with the MIA regarding the article. Authors may indicate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not assured.

In order to facilitate refereeing, copies of those papers (whether by the author or someone else) which are essential and referred to in the manuscript but are not conveniently accessible, should be enclosed.

COPYRIGHT
The acceptance of the article automatically implies the copyright transfer to MIA. Manuscripts are accepted for review with the understanding that the same work has not been published (except in the form of an abstract), that it is not under consideration for publication elsewhere, that it will not be submitted to another journal, and that its submission for publication has been approved by all the authors.

PREPARATION OF MANUSCRIPT
Manuscripts should be written in English.

The publisher strongly encourages submission of manuscripts written in TeX or one of its variants LaTeX, AMSTeX or AMSLaTeX. On acceptance of the paper, authors will be asked to send final version of file(s) to the Editorial Office.
AN INEQUALITY INVOLVING A TRIANGLE AND AN INTERIOR POINT AND ITS APPLICATION

TATYANA SOROKINA * AND SHANGYOU ZHANG

(Communicated by H. Martini)

Abstract. Let \(x_0 \) be an interior split point in the triangle \(T := [x_1, x_2, x_3] \). By \(\alpha_{ij} \) we denote the angle \(\hat{x}_0, x_i, x_j, i \neq j \). We show that

\[
\cos \alpha_{12} \cos \alpha_{23} \cos \alpha_{31} + \cos \alpha_{21} \cos \alpha_{32} \cos \alpha_{13} > 0.
\]

Additionally, we use this inequality to prove uniqueness and existence of a conforming quadratic piecewise harmonic finite element on the Clough-Tocher split of a triangle.

1. Introduction

In the process of proving existence and uniqueness of a certain finite element for the Laplace equation in two variables we came across an interesting geometric inequality that seemingly has nothing to do with harmonic functions. This inequality does not appear in the most comprehensive reference [4] or, to the best of our knowledge, in any other sources. Chapter XI of [4] entitled “Triangle and Point” would have been an appropriate emplacement for this inequality. In the fields of multivariate piecewise polynomials, also known as multivariate splines, and finite element analysis related to numerical solutions of partial differential equations, the split of a triangle into three subtriangles obtained by coning off an arbitrary interior point is known as the Clough-Tocher split, see Fig. 1.1(a). This paper is organized as follows. In the introduction, we review barycentric coordinates and Bernstein-Bézier framework for quadratic bivariate polynomial splines. We also state the boundary value problem whose solution can be approximated by our new finite element. The inequality itself is proved in Section 2. It is used to show existence and uniqueness of a conforming finite element constructed in Section 3. Comprehensive references for multivariate spines and finite element analysis are [3] and [2], respectively.

Bernstein-Bézier techniques have become standard tools in analyzing multivariate splines. We recall some of them in this section. Let

\[
b_i = b_i(x) \quad \text{where} \quad i = 1, 2, 3,
\]

Keywords and phrases: Triangle, interior point, inequality, product of cosines, finite element, harmonic, Clough-Tocher.

First author is partially supported by the grant from the Simons Foundation #235411 to Tatyana Sorokina. Second author is partially supported by NSFC projection 11571023.

* Corresponding author.
denote the barycentric coordinates of a point \(x = (x^1, x^2) \) relative to a triangle \(T = [x_1, x_2, x_3] \in \mathbb{R}^2 \), where \(x_i = (x_i^1, x_i^2) \). The barycentric coordinates are defined by the equation
\[
\begin{bmatrix}
 x_1^1 & x_1^2 & x_1^3 \\
 x_2^1 & x_2^2 & x_2^3 \\
 x_3^1 & x_3^2 & x_3^3 \\
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
\end{bmatrix}
= \begin{bmatrix}
 x_1^1 \\
 x_2^1 \\
 x_3^1 \\
\end{bmatrix}.
\]

In this paper we only use quadratic polynomials. Every such polynomial \(p \) can be written uniquely in its Bernstein-Bézier (BB-) form as
\[
p(x) = \sum_{i+j+k=2} c_{ijk} B_{ijk}, \quad \text{where } B_{ijk} = \frac{2!}{i!j!k!} b_1^i b_2^j b_3^k. \tag{1}
\]

The six coefficients \(c_{ijk} \) are called the BB-coefficients of \(p \). Each such coefficient is uniquely associated with its domain point \(\xi_{ijk} = (i x_1 + j x_2 + k x_3)/2, \ i + j + k = 2 \), located either at a vertex or a mid-edge of \(T \). The points \((\xi_{ijk}, c_{ijk})\) are called the control points of \(p \).

Let \(\Delta_{CT}(T) \) be the Clough-Tocher split of \(T \) into three subtriangles \(T_1, T_2, \) and \(T_3 \) as in Fig. 1.1(b). On each triangle \(T_i, \ i = 1, 2, 3 \), we define a quadratic polynomial \(p_i, \ i = 1, 2, 3 \), in two variables. Each \(p_i \) has six domain points depicted as either black dots or empty circles in Fig. 1.1(b). The black dots correspond to the BB-coefficients that will be set to zero in the proof of Theorem 3.1. Since the three control points associated with each edge \(e_i := [x_0, x_i] \) are the same for the two polynomials \(p_j \) and \(p_k \) corresponding to the two triangles \(T_j \) and \(T_k \) sharing \(e_i \), we conclude that \(p_j|_{e_i} = p_k|_{e_i} \), where \(i, j, k \) are pairwise distinct. Indeed, each such restriction is a univariate quadratic polynomial uniquely defined by these three BB-coefficients. Therefore, the dimension of the continuous quadratic piecewise polynomial (or spline) space defined on \(\Delta_{CT}(T) \) is equal to the total number of the control points, i.e., ten. In Section 3, we will impose an additional condition on each \(p_i, \ i = 1, 2, 3 \), namely \(\Delta p_i = 0 \), see [1]. The new space of piecewise harmonic splines is used in Section 3, where we show that its dimension is seven.

The finite element constructed in Theorem 3.1 can be used to solve the following
boundary value problem that has a harmonic solution:

\begin{align}
-\Delta u &= 0, \quad \text{in } \Omega, \\
u &= f, \quad \text{on } \partial \Omega,
\end{align}

where \(\Omega \) is a bounded polygonal domain in \(\mathbb{R}^2 \). The proof of the optimal order of convergence for a special choice of the split point \(x_0 \) can be found in [5]. It is easy to see that the proof in [5] does not depend on the exact location of the split point.

2. The inequality

Theorem 2.1. Let \(x_0 \) be an interior point in the triangle \(T := [x_1, x_2, x_3] \). By \(\alpha_{ij} \) we denote the angle \(x_0, x_i, x_j \), \(i \neq j \), see Fig. 1.1(a). Then

\[\Phi := \cos \alpha_{12} \cos \alpha_{23} \cos \alpha_{31} + \cos \alpha_{21} \cos \alpha_{32} \cos \alpha_{13} > 0. \]

Proof. Let \(v_i := x_i - x_0 \), and let \(u_i \) be the side of \(T \) opposite \(x_i \), oriented counterclockwise, \(i = 1, 2, 3 \). Then \(u_1 = v_3 - v_2, u_2 = v_1 - v_3, u_3 = v_2 - v_1 \), and

\[\Phi \times \prod_{i=1}^{3} (\|v_i\| ||u_i||) = (v_1 \cdot u_2)(v_2 \cdot u_3)(v_3 \cdot u_1) - (v_1 \cdot u_3)(v_3 \cdot u_2)(v_2 \cdot u_1) \]

\[= (v_1 \cdot (v_1 - v_3))(v_2 \cdot (v_2 - v_1))(v_3 \cdot (v_3 - v_2)) \]

\[- (v_1 \cdot (v_2 - v_1))(v_3 \cdot (v_1 - v_3))(v_2 \cdot (v_3 - v_2)). \]

Finally, we use barycentric coordinates to write \(x_0 = b_1 x_1 + b_2 x_2 + b_3 x_3 \), where \(b_1 + b_2 + b_3 = 1 \), and \(b_i > 0 \), \(i = 1, 2, 3 \), since \(x_0 \) is an interior point of \(T \). Then direct substitution shows that \(b_1 v_1 + b_2 v_2 + b_3 v_3 = 0 \). Thus, \(v_3 = -\alpha v_1 - \beta v_2 \), where both \(\alpha \) and \(\beta \) are positive. Substituting \(v_3 \) into the formula above we obtain

\[\Phi \prod_{i=1}^{3} (\|v_i\| ||u_i||) = (\alpha + \beta + 1) \left(v_1^2 v_2^2 - (v_1 \cdot v_2)^2 \right) \left((\alpha v_1 + \beta v_2)^2 + \alpha v_1^2 + \beta v_2^2 \right). \]

Thus, \(\Phi \) is positive, and moreover

\[\Phi = \frac{(\alpha + \beta + 1) \left(v_1^2 v_2^2 - (v_1 \cdot v_2)^2 \right) \left((\alpha v_1 + \beta v_2)^2 + \alpha v_1^2 + \beta v_2^2 \right)}{\|v_1\| ||v_2|| ||v_3|| ||u_1|| ||u_2|| ||u_3||}. \]

Remark 2.1. Note that when \(x_0 \) approaches the boundary of \(T \), the Cauchy-Schwarz term in the numerator of \(\Phi \) makes the inequality of Theorem 2.1 sharp.

Remark 2.2. We conjecture that some analog of Theorem 2.1 holds for a simplex and an interior point in \(\mathbb{R}^n \).
3. An application

Let \(\Delta_{CT}(T) \) be the Clough-Tocher split of \(T \) into three subtriangles \(T_1, T_2, \) and \(T_3 \) as in Fig. 1.1(b). Let \(P_2 \) be the space of quadratic polynomials in two variables. On \(T \) the conforming harmonic \(P_2 \) finite element space is defined as a subspace of continuous quadratic splines:

\[
P_T := \{ s \in C^0(T) \mid s|_{T_i} \in P_2 \quad \text{and} \quad \Delta p_i = 0, \quad i = 1, 2, 3 \}.
\]

Theorem 3.1. The Clough-Tocher conforming \(P_2 \) harmonic finite element space \(P_T \) has dimension seven, and is unisolvent by the seven nodal values:

\[
s(x_i), \quad i = 0, \ldots, 3, \quad s((x_i + x_{i+1})/2), \quad i = 1, 2, 3, \quad \text{where} \quad x_4 := x_1. \tag{3}
\]

Proof. Let \(s \) be a continuous quadratic spline on \(\Delta_{CT}(T) \). Using the Bernstein-Bézier (BB) basis for a continuous spline \(s \), see (1), the seven nodal values in (3) can be used to compute the BB-coefficients of \(s \) associated with the back dots in Fig. 1.1(b). The remaining three coefficients \(c_1, c_2, \) and \(c_3 \) associated with the midpoints of the interior edges need to be computed using the fact that \(s \) is piecewise harmonic. This yields a system of three linear equations with three unknowns. By Lemma 4.1 in [1], the following three conditions are necessary and sufficient for \(s \) to be harmonic on each triangle \(T_i, i = 1, 2, 3, \) in the triangle \(T \):

\[
c_i \|x_{i+1} - x_0\| \cos \alpha_{i+1,i} + c_{i+1} \|x_i - x_0\| \cos \alpha_{i,i+1} = f_i, \quad x_4 := x_1, \tag{4}
\]

where \(f_i \) is a known right-hand side determined by the nodal values in (3). The determinant of the system (4) is given by

\[
\begin{align*}
\text{Det} \begin{bmatrix}
\|x_2 - x_0\| \cos \alpha_{21} & \|x_1 - x_0\| \cos \alpha_{12} & 0 \\
0 & \|x_3 - x_0\| \cos \alpha_{32} & \|x_2 - x_0\| \cos \alpha_{23} \\
\|x_3 - x_0\| \cos \alpha_{31} & 0 & \|x_1 - x_0\| \cos \alpha_{13}
\end{bmatrix}
\prod_{i=1}^{3} \|x_i - x_0\| \text{Det} \begin{bmatrix}
\cos \alpha_{21} & \cos \alpha_{12} & 0 \\
0 & \cos \alpha_{32} & \cos \alpha_{23} \\
\cos \alpha_{31} & 0 & \cos \alpha_{13}
\end{bmatrix}
\prod_{i=1}^{3} \|x_i - x_0\| (\cos \alpha_{21} \cos \alpha_{32} \cos \alpha_{13} + \cos \alpha_{12} \cos \alpha_{23} \cos \alpha_{31}) \neq 0,
\end{align*}
\]

by Theorem 2.1. This completes the proof.

References

(Received March 18, 2019)

Tatyana Sorokina
Department of Mathematics
Towson University
7800 York Road, Towson, MD 21252, USA
e-mail: tsorokina@towson.edu

Shangyou Zhang
Department of Mathematical Sciences
University of Delaware
Newark, DE 19716, USA
e-mail: szhang@udel.edu