Exam 1
January 13th, 2009
Math 242 Section 013
Instructor: Patrick C. Rowe
Office: 323 Ewing Hall

Print Name: Answer Key

Academic Honesty Policy: Students at the University are expected to be honest and forthright in their academic endeavors. To falsify the results of one’s research, to steal the words or ideas of another, to cheat on an examination, or to allow another to commit an act of academic dishonesty corrupts the essential process by which knowledge is advanced. It is the official policy of the University of Delaware that all acts or attempted acts of alleged academic dishonesty be reported to the Dean of Students Office.

By signing below, I acknowledge that I have read the above and that I have neither given nor received assistance on this examination.

Sign Name: Answer Key

All work must be shown to receive credit. Try to do all your work on this paper and clearly indicate your final answer. If you need additional paper, ask for it. All paper used must be turned in with your exam.

No Calculators may be used. All cellular phones and/or electronic devices of any kind must be turned off and put away. CHECK YOUR PHONE NOW!! If your phone rings during the exam, you may be asked to leave.
1. Find the following limits by any method you wish.

a. \(\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 1} = \lim_{x \to 1} \frac{ax^2 - a}{bx^2 - b} = \frac{9}{6} \)

b. \(\lim_{x \to 0} (1 - \tan x) \sec x = 0 \cdot \sqrt{2} = 0 \)

c. \(\lim_{z \to \infty} \frac{e^z}{z^3} = \lim_{x \to \infty} \frac{e^x}{5x^2} = \lim_{x \to \infty} \frac{e^x}{6x} \neq \lim_{x \to \infty} \frac{e^x}{6} = \infty \)
\[\lim_{x \to 4^+} (3x - 12)^{x-4} = y \Rightarrow \ln y = \lim_{x \to 4^+} (x-4) \ln (3(x-4)) = \lim_{x \to 4^+} \frac{\ln(3(x-4))}{x-4} \cdot \frac{3}{3} = \lim_{x \to 4^+} \frac{3(x-4)}{x-4} = 3 \Rightarrow \ln y = 0 \Rightarrow y = 1 \]

\[\lim_{x \to 2^+} \left(\frac{8}{x^2 - 4} - \frac{x}{x - 2} \right) = \lim_{x \to 2^+} \frac{8 - x(x+2)}{x^2 - 4} = \frac{8 - 6}{2} = \frac{2}{2} = 1 \]

\[\lim_{x \to \infty} x \sin \left(\frac{\pi}{x} \right) = \lim_{x \to \infty} \frac{\sin \left(\frac{\pi}{x} \right)}{\frac{1}{x}} = \lim_{x \to \infty} -\frac{\pi \cos \left(\frac{\pi}{x} \right)}{x^2} = \frac{\pi}{\infty} = 0 \]
3. Find the area between $y = \sin x$ and $y = \frac{2}{\pi} x$ on the interval $x = [0, \pi]$.

\[\sin x = \frac{2}{\pi} x \implies x = \frac{\pi}{2}\]

\[
\int_0^{\pi/2} \sin x - \frac{2}{\pi} x \, dx + \int_{\pi/2}^\pi \frac{2}{\pi} x - \sin x \, dx =
\]

\[= -\cos x - \frac{x^2}{\pi} \bigg|_0^{\pi/2} + \frac{x^2}{\pi} + \cos x \bigg|_\pi^{\pi/2} =
\]

\[= \left(-\frac{\pi}{4} + 1 \right) + \left(\pi - 1 - \frac{\pi}{4} \right) = \frac{\pi}{2}\]
4. Verify that the shell method and the washer method calculate the same volume for the following problem.

Rotate the region bounded by \(y = x \) and \(y = \sqrt{x} \) about the y-axis

Washer method

\[
\pi \int_{0}^{1} y^2 - y^4 \, dy = \pi \left(\frac{y^3}{3} - \frac{y^5}{5} \right) \bigg|_{0}^{1} = \pi \left(\frac{1}{3} - \frac{1}{5} \right) = \\
\pi \cdot \frac{2}{15} = \frac{2\pi}{15}
\]

Shell method

\[
2\pi \int_{0}^{1} x(\sqrt{x} - x) \, dx = 2\pi \int_{0}^{1} x^{3/2} - x^2 \, dx = 2\pi \left(\frac{2}{5}x^{5/2} - \frac{x^3}{3} \right) \bigg|_{0}^{1} = \\
2\pi \left(\frac{2}{5} - \frac{1}{3} \right) = 2\pi \left(\frac{1}{15} \right) = \frac{2\pi}{15}
\]
5. Find the average value of \(f(x) = \sin 4x \) on \([-\pi, \pi]\)

\[
\bar{f}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin 4x \, dx = \frac{1}{2\pi} \left[-\frac{1}{4} \cos 4x \right]_{-\pi}^{\pi} = \frac{1}{8\pi} (1 - 1) = 0
\]

\[
\bar{f}(x) = 0
\]

6. Calculate the indefinite integrals by any method you can.

a. \(\int \frac{2x}{e^x} \, dx = 2 \int x e^{-x} \, dx = 2 \left(-xe^{-x} + \int e^{-x} \, dx \right) = -2xe^{-x} - 2e^{-x} + C \)

b. \(\int \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int (1 - \cos 2x)(1 + \cos 2x) \, dx = \frac{1}{4} \int 1 - \cos^2 2x \, dx = \frac{1}{4} \int 1 - \frac{1}{2} \cos 4x \, dx = \frac{1}{8} \int 1 - \cos 4x \, dx = \frac{1}{8} x - \frac{1}{32} \sin 4x + C \)
c. \[\int \frac{1}{\sqrt{1-4x^2}} \, dx \]
\[x = \frac{1}{2} \sin \theta \Rightarrow dx = \frac{1}{2} \cos \theta \, d\theta \]
\[\frac{1}{2} \int \frac{1}{\sqrt{1-\sin^2 \theta}} \cos \theta \, d\theta = \frac{1}{2} \int \cos^2 \theta \, d\theta = \frac{1}{2} \int 1 + \cos 2\theta \, d\theta = \]
\[= \frac{1}{4} \theta + \frac{1}{8} \sin 2\theta + C = \frac{1}{4} \theta + \frac{1}{4} \sin \theta \cos \theta + C = \]
\[= \frac{1}{4} \ln \left(\frac{2x}{\sqrt{4x^2-1}} \right) + \frac{1}{4} \cdot 2x \cdot \sqrt{4x^2-1} + C = \]
\[= \frac{1}{4} \ln \left(\frac{2x}{\sqrt{4x^2-1}} \right) + \frac{1}{2} \cdot x \cdot \sqrt{4x^2-1} + C \]

\[\int \frac{x-9}{(x+5)(x-2)} \, dx \]

Use partial fractions:
\[\frac{x-9}{(x+5)(x-2)} = \frac{A}{x+5} + \frac{B}{x-2} \Rightarrow x-9 = A(x-2) + B(x+5) \]
\[x=2: B = -1 \]
\[x=-5: A = 2 \]

Integral becomes:
\[\int \frac{2}{x+5} + \frac{-1}{x-2} \, dx = 2 \ln |x+5| - \ln |x-2| + C = \]
\[= \ln \left| \frac{x+5}{x-2} \right| + C \]