1) Find the following limits
 a) \[\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{\sin x}{2x} \lim_{x \to 0} \frac{\cos x}{x} = \frac{1}{2} \]
 b) \[\lim_{x \to 0} \left(1 + \frac{5}{x}\right)^x = e^5 \quad (as \ discussed \ in \ recitation) \]

2) Write down the iterative formula for Newton's Method and set up a scheme to find zeros of
 \[f(x) = \sin(x) \]
 Formula: \[x_{n+1} = x_n - \frac{f(x)}{f'(x)} \]
 Scheme: \[x_{n+1} = x_n - \frac{\sin(x_n)}{\cos(x_n)} = x_n - \tan(x_n) \]

3) Find the area of the region bounded by \(y = x^2 \) and \(y = x^3 \) in the first quadrant.
 \[\int_0^1 (x^3 - x^2) \, dx = \frac{1}{3} x^3 - \frac{1}{4} x^4 \bigg|_0^1 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \]