Maple Exam 1 

Answer Key 

 

The solutions shown here are representative. There may be other methods to solve the problems. 

 

 

Question 1 

> restart:with(plots):
 

> p1:=polarplot(1,theta=0..2*Pi):
 

> p2:=polarplot(cos(3*theta),theta=0..2*Pi):
 

> display(p1,p2);
 

Plot_2d
 

Question 2 

> restart:f:=taylor(exp(I*x),x=0);
 

series(`+`(1, `*`(I, `*`(x)), `-`(`*`(`/`(1, 2), `*`(`^`(x, 2)))), `-`(`*`(`*`(`/`(1, 6), `*`(I)), `*`(`^`(x, 3)))), `*`(`/`(1, 24), `*`(`^`(x, 4))), `*`(`*`(`/`(1, 120), `*`(I)), `*`(`^`(x, 5))))+O(`... (1)
 

> g:=taylor(cos(x)+I*sin(x),x=0);
 

series(`+`(1, `*`(I, `*`(x)), `-`(`*`(`/`(1, 2), `*`(`^`(x, 2)))), `-`(`*`(`*`(`/`(1, 6), `*`(I)), `*`(`^`(x, 3)))), `*`(`/`(1, 24), `*`(`^`(x, 4))), `*`(`*`(`/`(1, 120), `*`(I)), `*`(`^`(x, 5))))+O(`... (2)
 

> f:=convert(f,polynom);
 

`+`(1, `*`(I, `*`(x)), `-`(`*`(`/`(1, 2), `*`(`^`(x, 2)))), `-`(`*`(`+`(`*`(`/`(1, 6), `*`(I))), `*`(`^`(x, 3)))), `*`(`/`(1, 24), `*`(`^`(x, 4))), `*`(`*`(`/`(1, 120), `*`(I)), `*`(`^`(x, 5)))) (3)
 

> g:=convert(g,polynom);
 

`+`(1, `*`(I, `*`(x)), `-`(`*`(`/`(1, 2), `*`(`^`(x, 2)))), `-`(`*`(`+`(`*`(`/`(1, 6), `*`(I))), `*`(`^`(x, 3)))), `*`(`/`(1, 24), `*`(`^`(x, 4))), `*`(`*`(`/`(1, 120), `*`(I)), `*`(`^`(x, 5)))) (4)
 

> f-g;
 

0 (5)
 

Question 3 

> restart:a:=m->(((-1)^m)/(factorial(m)*factorial(m+1)))*(x/2)^(2*m+1);
 

proc (m) options operator, arrow; `/`(`*`(`^`(-1, m), `*`(`^`(`+`(`*`(`/`(1, 2), `*`(x))), `+`(`*`(2, `*`(m)), 1)))), `*`(factorial(m), `*`(factorial(`+`(m, 1))))) end proc (6)
 

a) Apply ratio test 

> limit(a(m+1)/a(m),m=infinity);
 

0 (7)
 

The radius of convergence is the inverse of the above, hence it is infinity. This shows the series converges for all x. 

>
 

b) Plot the first ten terms for x=1. 

> x:=1:
 

> a(m);
 

`/`(`*`(`^`(-1, m), `*`(`^`(`/`(1, 2), `+`(`*`(2, `*`(m)), 1)))), `*`(factorial(m), `*`(factorial(`+`(m, 1))))) (8)
 

> plot( [ seq([n,a(n)],n=1..10) ] , style=point, symbol=diamond);
 

Plot_2d
 

>