next up previous
Next: About this document ...

Name: Calculus III
Final Exam Problems
Top Sekrit!




Instructions: Show all work to receive full or partial credit. You may use a scientific calculator/graphing calculator. All University rules and guidelines for student conduct are applicable.

1.
Find the angle between vectors $\langle0, 1, -2 \rangle$ and $\langle-4, 1, 1 \rangle$.

2.
If

\begin{displaymath}f(x,y) = e^x \cos(xy),
\end{displaymath}

calculate $\nabla f$, $\frac{\partial f^2}{\partial x^2}$ and $\frac{\partial f^2}{\partial x \partial y}$.

3.
Find the equation of the plane passing through the points (0,0,1), (3,2,1) and (6,0,1).

4.
What is the area of the triangle with vertices (0,1,2), (3,-1,2), (3,3,-1)?

5.
Find the maximum and minimum value of

f(x,y) = x2 y + 3 x2 y2 + 2

for $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$.

6.
Find the equation of the tangent plane to the surface

\begin{displaymath}x^2 + \frac{y^2}{9} + z^2 = 1
\end{displaymath}

at the point $(\sqrt{2},3,1)$.

7.
Calculate the directional derivative of

f(x,y) = ex (x + y2)

at (0,1) in the direction $3 \widehat{i} + 4 \widehat{j}$.

8.
If

\begin{displaymath}\v f (x,y,z) = xy \widehat{i} + e^{yz} \widehat{j} + \ln(1+x^2 + y^2 + z^2) \widehat{k}
\end{displaymath}

find $\nabla \cdot \v f$ and $\nabla \times \v f$.

9.
Find the volume under the surface

f(x,y) = 4-x2-y2

over the region $R = \{(x,y) \vert x^2+y^2 \leq 4\}$.

10.
Find the centroid of the object sketched below assuming that it has uniform density.

$\textstyle \parbox{1.5in}{\epsfxsize=1.5in \epsfbox{wing.eps}}$

11.
Find the flux of

\begin{displaymath}\v f (x,y,z) = x^2 \widehat{i} + z \widehat{j} + e^z \widehat{k}
\end{displaymath}

on the cube shown below.
$\textstyle \parbox{1.5in}{\epsfxsize=1.5in \epsfbox{cube.eps}}$

12.
Find $\oint_C \v f \cdot d\v x$ where

\begin{displaymath}\v f(x,y) = (\cos(x) + y^2) \widehat{i} + 2 x y \widehat{j}
\end{displaymath}

and C is the path shown below leading from (1,-5) to (-1,-5).
$\textstyle \parbox{1.5in}{\epsfxsize=1.5in \epsfbox{tree2.eps}}$

13.
Find the mass and centroid of the object sketched below assuming the material has uniform density $\rho = 1$.

$\textstyle \parbox{1.5in}{\epsfxsize=1.5in \epsfbox{cone.eps}}$

14.
Calculate

\begin{displaymath}\iiint_R f(x,y,z) dx dy dz
\end{displaymath}

where

f(x,y,z) = xyz

and R is the region bounded by the xy-plane, xz-plane, yz-plane, the plane y=2 and the plane

x+z = 1.

15.
Calculate $\int_C \v f \cdot d\v x$ where

\begin{displaymath}\v f(x,y) = (\cos(\pi x) + y) \widehat{i} + \left(x + \frac{1}{1+y}\right) \widehat{j}
\end{displaymath}

over the path C shown below.

$\textstyle \parbox{1.5in}{\epsfxsize=1.5in \epsfbox{path.eps}}$

16.
Calculate $\int_C \v f \cdot d\v x$ where

\begin{displaymath}\v f (x,y) = xy \widehat{i} + (x^2 + z) \widehat{j} + x \widehat{k}
\end{displaymath}

where C is the line segment connecting (0,0,0) to (1,2,3).

17.
Find

\begin{displaymath}\oint_C \v f \cdot d\v x
\end{displaymath}

where

\begin{displaymath}\v f(x,y,z) = (x+y) \widehat{i} + (x+z) \widehat{j} + 6x \widehat{k}
\end{displaymath}

over the path C.

$\textstyle \parbox{1.5in}{\epsfxsize=1.5in \epsfbox{path2.eps}}$

18.
Calculate the center of mass of this 3/4 section of a washer.

$\textstyle \parbox{1.5in}{\epsfxsize=1.5in \epsfbox{washer.eps}}$

19.
Calculate

\begin{displaymath}\iint_R z dS
\end{displaymath}

where R is the upper surface of a sphere of radius 2 centered at the origin.

20.
Find a potential for the following vector field.

\begin{displaymath}\v F = \sin y \widehat{i} + (x \cos y + y^2) \widehat{j} + e^{3z} \widehat{k}
\end{displaymath}



 
next up previous
Next: About this document ...
Louis F Rossi
2002-03-25