next up previous
Next: About this document ...

Name: Calculus III
Exam 3
6 December 2000



Engage! - Captain Jean-Luc Picard


Instructions: Show all work to receive full or partial credit. You may use a scientific calculator/graphing calculator. All University rules and guidelines for student conduct are applicable.



1.
[20 pts] Calculate

\begin{displaymath}\iint_S (x^2+y) dA
\end{displaymath}

where S is the region between the line y=4x and the curve y=x2.
2.
[20 pts] Find the surface area of the plane

x + 2y + 3z = 10

over the disk

\begin{displaymath}x^2 + y^2 \leq 1.
\end{displaymath}




















3.
[20 pts] Find the mass of the object sketched below if $\rho = 3-z$.
$\textstyle \parbox{1.5in}{\epsfxsize=1.5in \epsfbox{pyramid.eps}}$
4.
[20 pts] Consider a spherical mass of radius a with density

\begin{displaymath}\sigma = a^3-(x^2 + y^2)z.
\end{displaymath}


(a) Set up but do not evaluate the first moment Mxy in spherical coordinates.















(b) Set up but do not evaluate the first moment Mxy in cylindrical coordinates.















(a) Set up but do not evaluate the first moment Mxy in rectangular coordinates.

5.
[20 pts] If

\begin{displaymath}\v F(x,y) = \langle x,\frac{1}{y} \rangle,
\end{displaymath}

find $\int_C \v F \cdot d\v r$ where C is the curve below
$\textstyle \parbox{3in}{\epsfxsize=3in \epsfbox{path.eps}}$


 
next up previous
Next: About this document ...
Louis F Rossi
2002-03-25