Proposed Problem: Large Values of Tan n

David P. Bellamy, University of Delaware Newark, DE 19716-2553

Jeffrey C. Lagarias AT&T Labs – Research Florham Park, NJ 07932-0971

Felix Lazebnik
University of Delaware
Newark, DE 19716-0001

1. Proposed Problem

(a). Show that there are infinitely many positive integers n such that

$$|\tan n| > n. \tag{1}$$

(b). Show that there are infinitely many positive integers n such that

$$\tan n > \frac{1}{4}n . (2)$$

2. Solution

The proofs require showing that there are integers n sufficiently close to $(2k+1)\frac{\pi}{2}$ for some integer k. We use the following Diophantine approximation lemmas.

(a). Lemma 1. Every irrational real θ has infinitely many Diophantine approximations $q \equiv 1 \pmod{2}$ with

$$\left|\theta - \frac{p}{q}\right| < \frac{1}{2q^2} \ . \tag{3}$$

(b). Lemma 2. Every irrational real θ has infinitely many (one-sided) Diophantine approximations $q \equiv 1 \pmod{2}$ with

$$\frac{2}{q^2} > \theta - \frac{p}{q} > 0 \ . \tag{4}$$

Lemma 1 is sharp in the sense that the constant 2 cannot be improved. Similarly Lemma 2 is sharp in that the constant 2 cannot be improved.

Solution. If $n=(2k+1)\frac{\pi}{2}+y$, where k is an integer and y is small, say $|y|<\frac{1}{4}$, then

$$\tan n = \cot y$$

$$= \frac{1 + \frac{y^2}{2!} + O(y^4)}{y - \frac{y^3}{3!} + O(y^5)}$$

$$= \frac{1}{y} + y + O(y^3) . \tag{5}$$

Suppose now that

$$|y| = \left| n - (2k+1)\frac{\pi}{2} \right| < \frac{1}{\alpha(2k+1)}$$
 (6)

for some constant α , then (5) gives

$$|\tan n| > \alpha(2k+1) - O(1)$$

> $\frac{2\alpha}{\pi}n - O(1)$.

To get infinitely many approximations n of the desired quality, we need infinitely many solutions to (6) for fixed α such that:

case (a). $\alpha > \frac{\pi}{2} \cong 1.571$.

case (b). $\alpha > \frac{\pi}{8} \cong$.393, and n satisfies the one-sided approximation condition

$$-\frac{1}{\alpha(2k+1)} < n - (2k+1)\frac{\pi}{2} < 0.$$
 (7)

The inequalities (6) and (7) can be rewritten as Diophantine approximations to the irrational $\theta = \frac{\pi}{2}$, namely

$$\left| \frac{\pi}{2} - \frac{n}{2k+1} \right| < \frac{1}{\alpha(2k+1)^2} ,$$
 (8)

and

$$\frac{1}{\alpha(2k+1)^2} > \frac{\pi}{2} - \frac{n}{2k+1} > 0.$$
 (9)

These two cases (a) and (b) are thus covered by Lemmas 1 and 2, respectively. \Box

Proof of Lemma 1. One out of every two convergents $\frac{p_n}{q_n}$ of the continued fraction expansion of $\theta = [a_0, a_1, a_2, \ldots]$ satisfies

$$|\theta - \frac{p_n}{q_n}| < \frac{1}{2q_n^2} \tag{10}$$

(See Hardy and Wright, *The Theory of Numbers*, Theorem 183.) At least one of every two consecutive convergents has an odd denominator, since

$$\det \begin{vmatrix} p_n & p_{n+1} \\ q_n & q_{n+1} \end{vmatrix} = -1 \ . \tag{11}$$

If infinitely many consecutive pairs (q_n, q_{n+1}) are both odd, then one of each pair satisfies (10), so we are done.

The remaining case is where there are finitely many such pairs. In this case the q_n 's alternate odd, even, odd, even,... from some point on. Suppose for convenience that the q_{2n} are all odd, the q_{2n+1} are all even, from some point on. Then

$$q_{2n+1} = a_{2n+1}q_{2n} + q_{2n-1} ,$$

whence $a_{2n+1} \equiv 0 \pmod{2}$. Thus $a_{2n+1} \geq 2$ and $q_{2n+1} \geq 2q_{2n}$. Now [Hardy and Wright, Theorem 164] gives

$$\left|\theta - \frac{p_{2n}}{q_{2n}}\right| \le \frac{1}{q_{2n}q_{2n+1}},$$

and

$$\left| \theta \frac{p_{2n}}{q_{2n}} \right| \le \frac{1}{q_{2n}(2q_{2n})} \le \frac{1}{2q_{2n}^2} ,$$

as required. A similar argument works if all q_{2n+1} are even and all q_{2n+2} odd, from some point on. \Box

Proof of Lemma 2. The continued fraction convergents satisfy

$$\frac{p_{2n}}{q_{2n}} > \theta > \frac{p_{2n+1}}{q_{2n+1}} \tag{12}$$

so if infinitely many q_{2n+1} are odd, we are done.

Now suppose all q_{2n+1} are even from some point on, in which case all q_{2n} are odd from that point on, using (11). As in Lemma 1, we have $a_{2n+1} \equiv 0 \pmod{2}$ from that point on. Now set

$$Q := q_{2n+1} - q_{2n}$$

$$P := p_{2n+1} - p_{2n}$$
.

Certainly Q is odd, and (12) gives

$$\frac{P}{Q} = \frac{p_{2n+1} - p_{2n}}{q_{2n+1} - q_{2n}} < \frac{p_{2n+1}}{q_{2n+1}} < \theta . \tag{13}$$

Next, we have

$$|Q\theta - P| = |(q_{2n+1}\theta - p_{2n+1}) - (q_{2n}\theta - p_{2n})|$$

$$\leq |q_{2n+1}\theta - p_{2n+1}| + |q_{2n}\theta - p_{2n}|$$

$$\leq \frac{1}{q_{2n+2}} + \frac{1}{q_{2n+1}}$$

$$\leq \frac{2}{q_{2n+1} - q_{2n}} = \frac{2}{Q}.$$
(14)

Now (13) and (14) give

$$\frac{2}{Q^2} > \theta - \frac{P}{Q} > 0 \ ,$$

as required. \Box

Remarks.

- (1). Extremal θ for Lemma 1 include $\theta = [a_0, a_1, \ldots]$ with all $a_{2n+1} = 2$ and $a_{2n} \to \infty$ as $n \to \infty$.
- (2). Extremal θ for Lemma 2 include $\theta = [a_0, a_1, \ldots]$ with all $a_{2n} = 1$, with $a_{2n+1} \equiv 0 \pmod{2}$ and $a_{2n+1} \to \infty$ as $n \to \infty$. [It requires a proof to show that $Q = q_{2n+1} q_{2n}$ are the "best" odd denominator one-sided approximations.]
- (3). Presumably for each $\alpha > 0$ there exist infinitely many positive n such that

$$\tan n > \alpha n .$$

This would be true if $\frac{\pi}{2}$ were a "random" real number.

email: 05789@brahms.udel.edu jcl@research.att.com fellaz@math.udel.edu