New Upper Bounds for the Greatest Number of Proper Colorings of a \((V,E)\)-Graph

Felix Lazebnik
DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF DELAWARE
NEWARK, DELAWARE

ABSTRACT

Let \(\mathcal{G}\) denote the family of simple undirected graphs on \(v\) vertices having \(e\) edges (\(v,e\)-graphs) and \(P(G;\lambda)\) be the chromatic polynomial of a graph \(G\). For the given integers \(v, e,\) and \(\lambda\), let \(f(v, e, \lambda)\) denote the greatest number of proper colorings in \(\lambda\) or less colors that a \((v,e)\)-graph \(G\) can have, i.e., \(f(v, e, \lambda) = \max\{P(G; \lambda); G \in \mathcal{G}\}\). In this paper we determine some new upper bounds for \(f(v, e, \lambda)\).

1. INTRODUCTION

The definitions in this paper are based on [3]. All graphs we consider are undirected labeled graphs without loops and multiple edges. Let \(V(G)\) and \(E(G)\) denote a set of vertices and edges of \(G\), respectively. The number of elements of a finite set \(A\) is denoted by \(|A|\). We write \(v = v(G) = |V(G)|\) and \(e = e(G) = |E(G)|\). By \(c = c(G)\) we denote the number of connected components of graph \(G\). For any positive integer \(\lambda\), a proper \(\lambda\)-coloring of a labeled graph \(G\) is a mapping of \(V(G)\) into the set \(\{1, 2, \ldots, \lambda\}\) (the set of colors) such that no two adjacent vertices of \(G\) have the same image. The chromatic number of a graph \(G\), denoted \(\chi(G)\), is the least \(\lambda\) (number of colors) for which there exists a proper coloring of \(G\). Let \(P(\lambda) = P(G; \lambda)\) denote the number of proper \(\lambda\)-colorings of \(G\). This function was introduced in [2] and turned out to be a polynomial function of \(\lambda\).

*This paper is based on a part of a Ph.D. thesis written by the author under the supervision of Prof. H. S. Wilf at the University of Pennsylvania.

© 1990 by John Wiley & Sons, Inc.
CCC 0364-9024/90/01025-06S04.00
Let $\mathcal{F} = \mathcal{F}_n$ be a family of all graphs having v vertices and e edges (v, e-graphs). Let λ be the number of colors. Denote by $f(v, e, \lambda)$ the greatest number of proper λ-colorings that a (v, e)-graph can have, i.e., $f(v, e, \lambda) = \min \{ \# \text{of } H: H \in \mathcal{F} \}$. In this paper we find some new nontrivial upper bounds for $f(v, e, \lambda)$ in the general case, i.e., in the case when the only restrictions on the integers v, e, and λ are $0 \leq e \leq v(v - 1)/2$, $\lambda \geq 2$.

The main result is the following:

Theorem 1.1. Let v, e, and λ be integers, $0 \leq e \leq v(v - 1)/2$, $\lambda \geq 2$. Let $f(v, e, \lambda)$ be equal to the greatest number of proper λ-colorings of a graph with v vertices and e edges. Then

$$f(v, e, \lambda) \leq A \lambda^e,$$

where A is the least of the following three quantities:

$$\left(1 - \frac{1}{\lambda}\right)^{\left\lfloor \frac{v(v-1)}{2} - e \right\rfloor}, \quad \left(1 - \frac{e}{\lambda} + \left(\frac{e}{\lambda}\right)^2\right)^{\frac{\lambda - 1}{\lambda - 1 + e}} \quad \text{or} \quad \frac{\lambda - 1}{\lambda - 1 + e}.$$

The question was motivated by the analysis of the running time of the backtrack algorithm for the graph coloring problem (see Wilf [10]; Bender and Wilf [1]). Another source of related problems is a paper of Wright [11], where an asymptotic approximation to the number $M_{v, \lambda}$, the total number of proper λ-colorings of all (v, e)-graphs found for a fixed λ, large v, and all e. Problems similar to ours but for different families of graphs (all graphs on v vertices whose chromatic number is equal to k) were considered by Tomassen [7,8]. Several other instances of the problem were considered by the author in [4], [5].

2. PROOF OF THEOREM 1.1.

The inequality

$$f(v, e, \lambda) \leq \left(1 - \frac{1}{\lambda}\right)^{\left\lfloor \frac{v(v-1)}{2} - e \right\rfloor} \lambda^e$$

was proved in [4]. In order to get other upper bounds, we apply some known facts based on the famous Inclusion—Exclusion Principle, or Sieve Method, and the corresponding interpretation of the chromatic polynomial of a graph due to Whitney [9]. Here we give a brief list of the corresponding facts. All proofs can be found in Lovasz [8, III, §2].

Proposition 2.1.

(i) (Inclusion—Exclusion Formula). Let A_1, \ldots, A_n be arbitrary events of a probability space (Ω, P). For each $I \subseteq \{1, \ldots, n\}$, let
\[A_\lambda = \prod_{i=d}^{n} A_i; \quad A_\lambda = \Omega; \]

and let

\[\sigma_i = \sum_{i=1}^{n} P(A_i), \quad \sigma_0 = 1. \]

Then

\[P(\overline{A_1}, \overline{A_2}, \ldots, \overline{A_j}) = \sum_{k=0}^{n} (-1)^{k+1} \sigma_k, \quad (2.2) \]

(ii) (Bonferroni Inequalities). The partial sums of

\[P(\overline{A_1}, \overline{A_2}) = \sigma_0 + \sigma_1 - \sigma_2 + \ldots, \quad (2.3) \]

are alternating in sign.

(iii) (Selberg's Sieve, particular case). If the events \(A_i, 1 \leq i \leq n, \) are pair-wise independent and \(P(A_i) = \rho \) for all \(i, 1 \leq i \leq n, \) then

\[P(\overline{A_1}, \ldots, \overline{A_j}) \leq \frac{1}{1 + ap/(1 - \rho)}. \quad (2.4) \]

Given a labeled graph \(G \) with \(v \) vertices and \(e \) edges and an integer \(\lambda \geq 1, \) we associate with \(G \) the sample space \(\Omega \) as follows:

\[\Omega = \{ \text{all (proper and improper) colorings of } G \text{ in } \lambda \text{ colors} \}. \]

Let \(V(G) = \{1, 2, \ldots, v\} \) and \(E(G) = \{ (i, j), (i, j), \ldots, (i, j) \} \). For each \(k, 1 \leq k \leq e, \) we define the event \(A_k \) as

\[A_k = \{ \omega \in \Omega \mid \text{vertices } i_k \text{ and } j_k \text{ are colored in the same color} \}. \]

Obviously, \(|\Omega| = \lambda^v \) and for each \(k, 1 \leq k \leq e, \) \(|A_k| = \lambda \cdot \lambda^{v-k} = \lambda^{v-k} \) (a color for \(i_k \) and \(j_k \) can be chosen in \(\lambda \) different ways and each of the remaining \(v-2 \) vertices can be colored in \(\lambda \) colors independently of each other).

We define a probability function \(P \) on \(\Omega \) in the usual way, assuming that the probability of each elementary event is equal to \(1/|\Omega| \). Then

\[P(A_k) = \lambda^{v-k}/\lambda^v = 1/\lambda, \quad 1 \leq k \leq e. \quad (2.5) \]

A coloring of \(G \) is proper if and only if none of the events \(A_k, 1 \leq k \leq e, \) happens. Therefore

\[P(G; \lambda) = P(\overline{A_1}, \ldots, \overline{A_j}) \cdot \lambda^* \]
and the results of Proposition 2.1 can be used in order to get upper bounds for \(P(G; \lambda) \). But the following questions should be answered first: what is the probability of the intersection of two events \(A_i \) and \(A_j \) for \(i \neq j \), and are they pairwise independent?

The event \(A_i \cdot A_j \) takes place if and only if vertices \(i, j \) are colored in the same color and vertices \(i, j \) are colored in the same color. Therefore

\[
[A_i \cdot A_j] = \begin{cases} \\
1 - \frac{\lambda \cdot (1 - \lambda)^{n-1}}{\lambda^2}, & \text{if } \{i, j\} \cap \{1, 2, \ldots, n\} = \emptyset \\
\lambda - \lambda^2, & \text{if } |\{i, j\} \cap \{1, 2, \ldots, n\}| = 1.
\end{cases}
\]

Thus

\[
[A_i \cdot A_j] = \lambda^{n-1} \quad \text{and} \quad P(A_i \cdot A_j) = \lambda^{n-1}/\lambda^n = 1/\lambda^2
\] (2.6)

for all \(k, 1 \leq k < \lambda < \infty \). Using (2.5) and (2.6) we get

\[
P(A_k \cdot A_j) = P(A_i \cdot A_j) \cdot P(A_k),
\]

which implies the independence of \(\Lambda \) and \(A_i \) for all \(i, j, 1 \leq i < j \leq \lambda \).

For our model,

\[
P(A_i) = \frac{1}{\lambda}, \quad \sigma_1 = \sum_{i=1}^{\lambda} P(A_i) = \frac{\lambda}{\lambda},
\]

\[
\sigma_2 = \sum_{i=1}^{\lambda} P(A_i \cdot A_j) = \frac{e(\lambda - 1)}{2\lambda}.
\]

Using this and multiplying both sides of (2.3) and (2.4) by \(\|E\| \), we obtain two upper bounds for \(P(G; \lambda) \) and \(f(v, e, \lambda) \): from (2.3):

\[
P(G; \lambda) \leq f(v, e, \lambda) < \left(1 - \frac{e}{\lambda} + \left(\frac{e}{\lambda^2}\right)\right)\lambda^n
\] (2.7)

from (2.3):

\[
P(G; \lambda) \leq f(v, e, \lambda) \leq \frac{\lambda - 1}{\lambda - 1 + e}\lambda^n.
\] (2.8)

Combining (2.1), (2.7), and (2.8), we obtain a proof of Theorem 1.1. For some ranges of parameters, the comparison of (2.1), (2.7), and (2.8) is simple, and it gives

\[
\text{for } e = 0, 1, \lambda + 1.
\]
the right sides of (2.7) and (2.8) are equal;

$$\text{for } e > \max \left\{ \lambda + 1, (\lambda - 1) \left[\frac{\lambda}{\lambda - 1} \right]^{s-1} - 1 \right\},$$

the bound given by (2.8) is better than those given by (2.1) and (2.7);

$$\text{for } \nu - 1 \leq e \leq \lambda + 1,$$

the bound given by (2.1) is better than ones in (2.7) and (2.8).

References

