Core Problems.

Read the corresponding sections from the text and lecture notes. Use Maple to check your answers, or to facilitate your work.

Section 14.8: 40, 41, 43
Section 15.1: 1, 3.
Section 15.2: 5, 13 – 21 (odds only), 27, 29, 31, 35.
Section 15.3: 9, 13, 19, 21, 23, 28, 35, 37, 43, 45, 47.

Solutions of these problems should be submitted.

H9.1 Consider two lines: \(l_1 : x = 1 + t, y = 1 - t, z = 3 + 2t, t \) is any real number, and \(l_2 \), defined as intersection of two planes: \(\alpha : x + y + 2 = 0 \) and \(\beta : x - y + 2z = 4 \). Find the distance between these lines by using the following three methods.

(a) (5 points) Geometric method, which uses the projection of a vector \(\vec{AB} \) with \(A \) on \(l_1 \) and \(B \) on \(l_2 \) on the vector \(\vec{n} \) perpendicular to direction vectors of \(l_1 \) and \(l_2 \).

(b) (5 points) Write equation of the plane through \(l_1 \) which is parallel to \(l_2 \). Then find the distance from any point of \(l_2 \) to this plane by using the distance formula from a point to a plane.

(c) (5 points) By writing a parametric equation of \(l_2 \) using a parameter \(s \), and finding the absolute minimum of the function \(f(t,s) \) representing the distance (or square of the distance) between a point \(A \) on \(l_1 \) and a point \(B \) on \(l_2 \).

Make sure that the answers you get in (a), (b), (c) are equal.

H9.2 (5 points) Using Maple show that the function \(z = xe^y + ye^x \) is a solution of the equation

\[
\frac{\partial^3 z}{\partial x^3} + \frac{\partial^3 z}{\partial y^3} = x \frac{\partial^3 z}{\partial x \partial y^2} + y \frac{\partial^3 z}{\partial x^2 \partial y}
\]

H9.3 (8 points)

(i) Show that the product of the \(x \)-, \(y \)-, and \(z \)-intercepts of any tangent plane to the surface \(xyz = c^3 \) is a constant.

(ii) (2 points) Let \(\alpha \) be a tangent plane to the surface \(z = \frac{1000}{xy} \). If \(\alpha \) intersects \(x \)- and \(y \)-axes at points \((2,0,0) \) and \((0,5,0) \), respectively, find its intersection with \(z \)-axis.