I suggest that in every assignment you start with
(i) going over the corresponding section in the text and lecture notes
(ii) solving all core problems (these you do not submit)
(iii) solving and writing solutions for the problems you have to submit.

Core Problems.

Section 12.4: 1, 3, 7, 13, 17, 19, 31, 33, 35, 39, 43, 49.
Section 12.5: read up to Planes (page 797). Do problems 1, 3, 9, 15, 19, 21.

Problems to be submitted.

H2.1 Given a cube $ABCDA_1B_1C_1D_1$, with sides AA_1, BB_1, CC_1 and DD_1 being parallel (can think of them as “vertical”).

(i) Find the angle between diagonal AC_1 of a cube and diagonal AB_1 of its face
(ii) Repeat part (i) replacing AB_1 by A_1B
(iii) Let M denote the center of the square $ABCD$ and let N be a point of the segment BB_1 such that $\frac{BN}{NB_1} = \frac{3}{2}$. Find the angle between lines MC_1 and AN.

H2.2 Let A_1, A_2, A_3, A_4 be four points in \mathbb{R}^3. Suppose lines A_1A_2 and A_3A_4 are perpendicular, and lines A_1A_3 and A_2A_4 are perpendicular. Prove that then lines A_1A_4 and A_2A_3 are also perpendicular.

H2.3 (i) If $\vec{c} = |\vec{a}|\vec{b} + |\vec{b}|\vec{a}$, where $\vec{a}, \vec{b}, \vec{c}$ are all nonzero vectors, show that \vec{c} bisects the angle between \vec{a} and \vec{b}.

(ii) Let OA, OB, OC be three rays in space, and let rays OD, OE, OF bisect the angles AOB, BOC, COA, respectively. Prove that the three angles formed by the rays OD, OE, OF are either all acute, or all right, or all obtuse.

H2.4 Suppose points A_1, A_2, \ldots, A_n lie on a unit circle centered at point O and divide it into n congruent arcs.

(i) Find
$$\sum_{i=1}^{n} |\vec{A}_iA_j|^2.$$

(ii) Find the sum of squares of lengths of all segments A_iA_j, $1 \leq i < j \leq n$.

1
(Hint: Use Problem H1.4)

H2.5 Let \(\vec{v} = 5\hat{j} \) and let \(\vec{u} \) be a vector with length 3 that initiates at the origin and rotates in the \(xy \)-plane. Find the maximum and the minimum values of the length of the vector \(\vec{u} \times \vec{v} \). In what direction does \(\vec{u} \times \vec{v} \) point?

H2.6 Prove that for any \(\vec{a},\vec{b},\vec{c} \),

\[
\vec{a} \times (\vec{b} \times \vec{c}) = (a \cdot c)\vec{b} - (a \cdot b)\vec{c}.
\]

If you wish, you can use Maple to solve this problem.