I suggest that in every assignment you start with
(i) going over the corresponding section in the text and lecture notes
(ii) solving all core problems (these you do not submit)
(iii) solving and writing solutions for the problems you have to submit.

Core Problems.

Section 12.1: 1 – 39 (only odds, excluding #37).
Section 12.2: 1 – 45 (odds only).
Section 12.3: 1 – 59 (odds only).

Problems to be submitted.

H1.1 Given two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ and point Q on the segment P_1P_2. Suppose \(\frac{P_1Q}{P_2Q} = 5 \).

(i) Express the coordinates \((x_Q, y_Q, z_Q)\) of Q in terms of the coordinates of P_1 and P_2.
(ii) Repeat part (i) replacing 5 by an arbitrary real number k, $k \geq 0$.

H1.2 Let A_1, A_2, A_3, A_4 be four points in \mathbb{R}^3. Let B_{ij} denote the midpoint of the segment A_iA_j and C_{ijkl} denote the midpoint of the segment $B_{ij}B_{kl}$. Prove that points C_{1234}, C_{2341} and C_{1324} always coincide.

H1.3 Let A_1, A_2, A_3, A_4 be four points in \mathbb{R}^3. Think about them as vertices of a tetrahedron. A median of a tetrahedron is the segment which joins its vertex with the point of intersection of the three medians of the opposite face. Prove that all four medians of the tetrahedron are concurrent and their common point divides each of them in the ratio $3 : 1$.

H1.4 Suppose points A_1, A_2, \ldots, A_n lie on a circle centered at point O and divide it into n congruent arcs. Prove that the

$$\sum_{i=1}^{n} \overrightarrow{OA_i} = \overrightarrow{0}$$

(Hint: The case when n is even is easy. If n is odd, consider two distinct axes of symmetry of the given set of points.)

H1.5 (i) Show that $\sum_{i=1}^{n} \cos(\alpha + \frac{2\pi}{n}i) = \sum_{i=1}^{n} \sin(\alpha + \frac{2\pi}{n}i) = 0$

(ii) Suppose that $\sin x + \sin y + \sin z = \cos x + \cos y + \cos z = 0$. Compute

$$\sin 2000x + \sin 2000y + \sin 2000z$$

(Hint: in both (i) and (ii) one can use the result from H1.4.)