
Present your solutions with all details. All problems carry the same weight of 10 points; 60 points total. Do not copy the problems. You have 50 minutes for this part of the exam.

1. Write down carefully the following definitions:
 (i) of the double integral of \(f(x,y) \) over the rectangle \(R \);
 (ii) of the moment of a lamina with mass density function \(\rho(x,y) \) with respect to \(x \)-axis;
 (iii) of the the 3-dimensional vector field;
 (iv) of the polar rectangle.

2. Use Lagrange multipliers to find the minimum and the maximum values of the function \(f(x,y,z) = 2x + 6y + 10z \) on \(x^2 + y^2 + z^2 = 35 \).

3. Explain the formula for the volume \(dV \) in spherical coordinates as \(\rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \).

4. Evaluate the integral by first reversing the order of integration:
 \[
 \int_0^1 \int_{3w}^3 e^{x^2} \, dx \, dy.
 \]

5. (i) Consider the region \(D \) in the 1-st quadrant bounded by the rose \(r = \cos 3\theta \) and the \(x \)-axis.
 (a) Sketch the region.
 (b) Rewrite the integral \(\iint_D \, dA \) representing the area of \(D \) as an iterated integral indicating clearly the limits of integration. You do not have to compute the integral.
 (ii) Represent the work done by the force field \(\vec{F} = x\vec{i} + (y + 2)\vec{j} \) in moving the object along the arch of the cycloid
 \[
 \vec{r}(t) = (t - \sin t)\vec{i} + (1 - \cos t)\vec{j}, \quad 0 \leq t \leq 2\pi
 \]
 by an integral of a simple expression \(f(t) \) with respect to \(t \). You do not have to compute the integral.

6. Show that the magnitude \(F \) of the force of gravitational attraction of a lamina with constant density \(\rho \) that occupies an entire plane on a point-mass object with mass \(m \) located at a distance \(d \) from the plane is \(F = 2\pi Gm\rho \).
Problem 1. Let E be the solid in the first octant bounded by the cylinder $x^2 + y^2 = 1$ and planes $y = z$, $x = 0$ and $z = 0$ with density function $\rho(x, y, z) = 1 + x + y + z$. Find

(i) the exact value of the mass of E

(ii) approximate the result in (i).

Problem 2. (i) Find the exact value of

$$\int_C x^3 y^2 z \, ds,$$

where C is the curve with parametric equations $x = e^{-t} \cos 4t, y = e^{-t} \sin 4t, z = e^{-t}, 0 \leq t \leq 2\pi$.

(ii) approximate the result in (i).