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Many electrochemical devices are formulated on conjugated polymer films. A model is presented for
electrogenerated chemiluminescence in such systems. The resulting diffusion equation for ion transport
has a standard Fickian form, but with a highly nonlinear diffusion coefficient. The asymptotic analysis of
the equation involves both intermediate layers and logarithmic matching. The asymptotic results show a
sharp Fickian front, and compare favourably with numerical simulations and experimental results. Addi-
tional results are also presented for the solution beyond saturation, as well as in the more realistic case of
polar coordinates.
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1. Introduction

A conjugated polymer is one with alternating single and multiple bonds, which causes the delocalization
of the π -valence band (polyacetylene is a typical example) (Barford, 2005). A conjugated polymer film
can be created by doping the polymer during oxidation and reduction processes (Guo et al., 2011). The
delocalization of the valence electrons gives these polymer films desirable electrical properties.

In recent years, the applications of electrochemical conjugated polymer films have multiplied. Such
films are used in many types of chemical, humidity and biosensors (Adhikari & Majumdar, 2004). These
films can be used in electrochromic windows that control the transmission of light (Rauh, 1999). They
form the basis for organic light-emitting diodes (OLEDs) (Armstrong et al., 2001) of the type now used
for televisions (van der Vaart et al., 2005). By exploiting the volume change of polymer films during
oxidation and reduction, one can use them to create electrochemical actuators (Jager et al., 2000) or
artificial muscles (Smela, 2003). One important application of such conjugated polymer devices is their
use in electrogenerated chemiluminescence (ECL) (Richter, 2004), a phenomenon that has applications
to such areas as fingerprinting (Xu et al., 2012). A robust knowledge of the behaviour of the underlying
kinetics is crucial to controlling and optimizing such devices.

One key feature of such systems is a sharp front in the concentration of ionic clusters, which causes
bright patterns in ECL experiments (Guo et al., 2011). Since the front propagates with time, these
patterns are sometimes referred to as ‘ECL waves’ or ‘ECL solitons’ (Chang et al., 2009; Chen et al.,
2011). This latter characterization, implying as it does a travelling-wave solution with constant speed,
is problematic. While experiments exhibiting sharp fronts in such systems have existed for years (Aoki
et al., 1992), some experiments show the front s(t) behaving in a standard Fickian fashion, proportional
to t1/2 (Tezuka et al., 1999), while others claim to see s(t) ∝ t (Tezuka et al., 1991; Wang et al., 2004),
and still others see both behaviours, depending on experimental parameters (Wang & Smela, 2009).

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

http://imamat.oxfordjournals.org/


534 D. A. EDWARDS

Constant front speed is plausible in these systems due to the polymeric nature of the film. As the
ionic clusters move into previously ‘dry’ regions of the polymer, the polymer turns ‘wet’ (Guo et al.,
2011), which induces swelling and other structural changes (Chang et al., 2009). This behaviour is
reminiscent of ‘Case II’ diffusion in polymers (Thomas & Windle, 1982). Including viscoelastic stress
effects due to swelling in polymer-penetrant networks can produce fronts which move with constant
speed (Edwards, 1995). However, most of the models for ECL systems to date have included only dif-
fusive effects (Lacroix et al., 1998), though several have highly nonlinear diffusion coefficients (Wang
et al., 2009). Since Fickian models allow similarity solutions depending on x/

√
t, it is unlikely that such

models can capture constant-speed behaviour (Wang et al., 2009).
In Guo et al. (2011), the authors present a Fickian-type model which they analyse via numerical

simulations. They claim that the simulations demonstrate that the model allows sharp fronts moving
with constant speed. We shall examine the same model using an asymptotic approach. We shall show
that though the model does indeed allow quite sharp fronts, they move proportional to t1/2.

2. Governing equations

2.1 The full model

The full description of the model under consideration is provided in Guo et al. (2011); below we sum-
marize the relevant details for our purposes. The ECL wave is modelled through the concentration C of
ionic clusters through a polymer matrix. The relevant (dimensionless) diffusion equation is the follow-
ing:

∂C

∂t
= ∂

∂x

[
D(C)

∂C

∂x

]
, (2.1a)

D(C) = Dw

1 + e−κ(C−CT)
+ Dd, (2.1b)

where the subscripts ‘w’ and ‘d’ refer to ‘wet’ and ‘dry’. Here CT is a saturation concentration above
which we consider the polymer to be ‘wet’. Initially there are no clusters in the polymer, so

C(x, 0) = 0. (2.2)

In Guo et al. (2011) the relevant spatial interval is taken as x ∈ [−1, 1]; however, the problem they pose
is even, so we take the interval as x ∈ [0, 1] with

∂C

∂x
(0, t) = 0. (2.3a)

At the other boundary, a constant concentration of clusters is supplied:

C(1, t) = 1. (2.3b)

2.2 Asymptotic simplifications

Such polymers are observed to have great changes in the diffusion coefficient localized about a transi-
tion between a conductive and non-conductive state (in our terminology, wet and dry). Hence certain
previous models of these systems use a piecewise-constant form for D (Lacroix et al., 1998). Such a
form is just the limit of the sigmoidal form (2.1b) for large κ; sharp fronts have been observed in the
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solutions to (2.1) when κ is around 30 (Guo et al., 2011). The dramatic behaviour is due to the fact that
κ is exponentiated.

Taking κ → ∞ in our model yields the following piecewise-constant model, to leading order:

D(C) =
{

Dd, C < CT (dry),

Dw + Dd, C > CT (wet),
(2.4)

as long as C − CT = O(1), that is, away from the moving boundary s(t) where

C(s(t), t) = CT. (2.5a)

Note from the boundary conditions that
s(0) = 1. (2.5b)

In addition, the diffusion coefficients in the two regions are vastly different; in particular, Dd is taken to
be much smaller than Dw (Guo et al., 2011; Lacroix et al., 1998). Hence we rewrite the ratio between
them as

Dd

Dw
= D∗

κ
, (2.6)

where D∗ is considered to be O(1).
With (2.4) replacing (2.1b), the original system may be rewritten as a moving boundary-value prob-

lem. Using the same subscripts as before, we have the following in the dry region:

∂Cd

∂t
= Dd

∂2Cd

∂x2
, 0 < x < s(t), (2.7a)

∂Cd

∂x
(0, t) = 0, Cd(x, 0) = 0. (2.7b)

Note that this solution exists only until s(t) = 0; after that time, the wet solution will occupy the entire
domain. The system in the wet region is given by

∂Cw

∂t
= (Dw + Dd)

∂2Cw

∂x2
, s(t) < x < 1, (2.8a)

Cw(1, t) = 1, (2.8b)

where there is no initial condition since initially the polymer is dry. To close the system, we use (2.4) in
a flux balance across the front to obtain

Dd
∂Cd

∂x
(s−(t), t) = (Dw + Dd)

∂Cw

∂x
(s+(t), t). (2.9)

Equations (2.7) and (2.8) form a Stefan-like problem which can be solved for Cw and Cd. We call this
solution the piecewise solution, as it results from taking D(C) piecewise constant. Note these solutions
will not be accurate near x = s(t), where C ≈ CT and the true sigmoidal behaviour of (2.1b) comes into
play. (We eschew the typical perturbation parlance of ‘outer solution’ because it will be shown that the
piecewise solution has an interior layer.)

The flaw can also be seen by noting that the true solution of (2.1) must be continuous, while the
piecewise solution will have a jump in ∂C/∂x by (2.9). To smooth this jump, we will derive a smoothing
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solution in a corner layer about (x, C) = (s(t), CT). When deriving these solutions in Sections 3 and 4,
we will focus on the leading-order terms only. Corrections will be discussed in Section 5.

3. The piecewise solution

3.1 The dry region and the similarity variable

With Dd now O(κ−1) by (2.6), the leading order of (2.7a) becomes

∂Cd

∂t
= 0. (3.1)

Solving (3.1) subject to (2.7b), we have

Cd(x, t) = 0, 0 < x < s(t). (3.2)

We note that to leading order, the dry solution satisfies (2.3a). Therefore, for time bounded away from
tmax, where

s(tmax) = 0, (3.3)

the presence of the symmetry boundary does not affect the evolution of the solution. In particular, as
long as tmax − t = O(1), the solution is the same (to leading order) as if Cd(x, t) ≡ 0 for all x < s(t).
This formulation is quite analogous to the one-phase Stefan problem (Alexiades & Solomon, 1993,
Section 2.1), which has a similarity-variable solution where s(t) ∝ √

t.
Therefore, we introduce the similarity variable

ζ = 1 − x

2
√

Dwt
�⇒ s(t) = 1 − 2ζs

√
Dwt, (3.4)

where ζs is a positive constant. (The somewhat non-standard form for s(t) appears because the front
moves from right to left in x.) Hence, we have from (3.3) that

tmax = 1

4ζ 2
s Dw

; (3.5)

after that the wet solution occupies the entire domain.
Though our discussion above related to the piecewise solution, since (2.1a) is purely Fickian, the

similarity-variable approach will hold for the full solution as well. Therefore, substituting (3.4) into
(2.1a), (2.3b) and (2.5a), we obtain

d

dζ

(
D(C)

Dw

dC

dζ

)
+ 2ζ

dC

dζ
= 0, (3.6)

C(0) = 1, (3.7a)

C(ζs) = CT. (3.7b)

Note that by defining ζ in this way, we shift the Dirichlet condition (3.7a) to the more familiar loca-
tion ζ = 0.
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Fig. 1. Left: piecewise solution (dotted). Right: blowup of shaded region illustrating intermediate and corner layers. The dotted
curve is the piecewise solution; the solid is the smoothed solution. Variables indicated are the corrections to CT in the indicated
regions.

In order to complete the piecewise solution, we must find the solution in the wet region, which
requires the similarity-variable analogue of (2.9):

Dd
dCd

dζ
(ζ+

s ) = (Dw + Dd)
dCw

dζ
(ζ−

s ). (3.8)

Note that the ± superscripts on ζs have switched due to the negative sign in the definition of ζ in (3.4).

3.2 The dry intermediate layer

Since (3.2) does not satisfy (3.7b), a layer is needed near x = s(t). As several different layers will be
needed in the analysis, we illustrate them with a schematic in Fig. 1.

The first internal layer needed is of width O(κ−1); as it is not the thinnest layer needed, we call it
the intermediate layer. We let

Cd(ζ ) = C>(z) + o(1), z = κ(ζ − ζs), (3.9)

where the subscript ‘>’ refers to the region where z > 0, which indicates we are solving only for the
dry solution. Since C − CT = O(1) in this region, we may use the piecewise-constant form for D(C) in
(2.4). Substituting (3.9) into (3.6), we have, to leading order,

D∗
d2C>

dz2
+ 2ζs

dC>

dz
= 0, z > 0, (3.10)

where we have used (2.6).
To obtain the boundary conditions on (3.10), we first substitute (3.9) into (3.7b):

C>(0) = CT. (3.11a)
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In addition, the boundary-layer solution must match to (3.2) as ζ → ∞, so we have

C>(∞) = 0. (3.11b)

Solving (3.10) subject to (3.11) yields

C>(z) = CT exp

(
−2ζsz

D∗

)
. (3.12)

3.3 The wet region

Substituting (3.12) into (3.8), we obtain, to leading order,

dCw

dζ
(ζ−

s ) = −2CTζs, (3.13)

which becomes the new front condition on Cw in the piecewise problem. The operator that holds is
derived by substituting (2.4) into (3.6), yielding

d2Cw

dζ 2
+ 2ζ

dCw

dζ
= 0, 0 < ζ < ζs, (3.14)

to leading order. Note the domain on (3.14), which indicates that we are solving only in the wet region.
Solving (3.14) subject to (3.7), we have the following:

Cw(ζ ) = 1 − (1 − CT)
erf ζ

erf ζs
. (3.15)

Substituting (3.15) into (3.13), we obtain an implicit expression for the value of ζs characterizing
the front speed:

(1 − CT)e−ζ 2
s = CTζs erf ζs

√
π . (3.16)

Note that (3.16) is independent of Dw (since that dependence is scaled away in the definition of ζ ). Also
note that (3.16) will have a unique solution, since the left-hand side is strictly decreasing from 1 − CT to
0, while the right-hand side is strictly increasing from 0 to ∞. In particular, with the value of CT given
in Guo et al. (2011), we have that

CT = 0.95 �⇒ ζs = 0.1608. (3.17a)

Then using the value of Dw given in Guo et al. (2011), we obtain

Dw = 0.1 �⇒ tmax = 96.6552. (3.17b)

A graph of the piecewise solution is shown in Fig. 2. As expected, it exhibits a discontinuity in the
derivative at ζ = ζs which must be smoothed.

4. The smoothing solution

The solution in Section 3 is not smooth at the front ζ = ζs due to the piecewise-constant nature of (2.4)
used in its derivation. However, the true solution must be smooth since the true diffusion coefficient
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Fig. 2. Piecewise solution with jump in derivative at ζ = ζs.

is given by (2.1b). On the z-scale, the dry solution varies as given by (3.12), while the wet solution is
simply CT to leading order. Hence we must insert a corner layer to smooth the resulting discontinuous
derivative. To discern the proper scalings, we substitute (2.1b) and the definition of z in (3.9) into (3.6):

d

dz

([
κ

1 + e−κ(C−CT)
+ D∗

]
dC

dz

)
= −2ζs

dC

dz
. (4.1)

We may use (4.1) to obtain physical insights into the system. In the dry region, C < CT, the exponen-
tial becomes large, and the D∗ term dominates. This forces a balance between the D∗ term (representing
diffusion in the dry region under the piecewise-constant formulation) and the right-hand side (which
is the evolution term ∂C/∂t term rewritten in the z variables). Hence the z-scale is the diffusion length
scale in the dry region [as seen in (3.10)]. In the wet region, C > CT, the exponential becomes small, and
the first term on the left-hand side dominates. This causes a constant wet solution in the intermediate
layer, reflecting the fact that the z length scale is shorter than the diffusion length scale in the wet region.

4.1 Matching the corner layer to the dry region

In the corner layer, we must keep track of the entire structure of D(C) by balancing the two bracketed
terms in (4.1). By selecting a scaling that forces the exponential to be O(κ), both bracketed terms are
O(1). Therefore, we introduce the following substitution, whose non-standard form is motivated by the
structure of (2.1b):

Cc(z) = CT − log κ

κ
− uc(η)

κ
+ o(κ−1), η = κz, (4.2)
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where the subscript ‘c’ denotes ‘corner’. The proper width of the corner layer has been derived by
matching the derivatives as we exit the corner layer to the right:

dC>

dz
(0+) = −κ

κ

duc

dη
(∞) �⇒ duc

dη
(∞) = 2CTζs

D∗
, (4.3)

where we have used (3.12). The reason for the addition of the constant term between CT and uc becomes
clear when we substitute (4.2) into (4.1). The leading order of the result is

d

dη

([
κ

1 + κeuc
+ D∗

]
duc

dη

)
= 0. (4.4)

Hence this term forces a balance between the two bracketed terms as κ → ∞.
Integrating (4.4) with respect to ζ , we have, to leading order,(

1

euc
+ D∗

)
duc

dη
= 2ζsCT, (4.5)

where we have used (4.3). Since the left-hand side is just the flux, (4.5) says that the flux is constant
throughout the corner layer. (Recall that a constant flux led to a discontinuous derivative in the piecewise
solution because the diffusion coefficient was discontinuous.) Integrating (4.5) again, we obtain

D∗uc − e−uc = 2ζsCTη + A, (4.6)

which defines an implicit relation for uc. Here A is a constant yet to be determined.
There is a discrepancy when trying to match (4.2) and (3.12) as η → ∞. In particular, we note that

the proper balance in (4.6) as η → ∞ is between the first terms on each side. Thus we may rewrite (4.2)
in the matching limit as

Cc(η) ∼ CT − log κ

κ
− 2ζsCTη

κD∗
− A

κD∗
, η → ∞,

Cc(z) ∼ CT

(
1 − 2ζsz

D∗

)
− log κ

κ
− A

κD∗
, z → 0+. (4.7)

The first two terms in (4.7) match the first two terms in the expansion of (3.12) for small z. The third
term does not match, but indicates what the size in the next term of the expansion for C> should be.
Note that the contribution from A is even smaller.

We conclude by writing the uniformly valid solution in the dry region:

C(ζ ) = CT

[
exp

(
−2ζsκ(ζ − ζs)

D∗

)
+ 2ζsκ(ζ − ζs)

D∗

]
− log κ

κ
− uc(η)

κ
, ζ > ζs. (4.8)

Note that the domain restriction on ζ still holds, since the solution contains the exponential term which
diverges for ζ < ζs.

4.2 The wet intermediate layer

To construct the uniform solution in the wet region, we examine the behaviour of uc as η → −∞, which
should then match to Cw. As η → −∞, the exponential on the left-hand side of (4.6) dominates, so
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we have

uc ∼ − log(2ζsCT|η| − A), η → −∞,

Cc(z) ∼ CT + 1

κ

[
log(2ζsCT|z|) − A

2κζsCT|z|
]

, z → 0−. (4.9)

Since the logarithmic behaviour does not match the outer solution Cw, there must be an intermediate
z-layer in the wet region as well. Thus we let

C<(z) = CT − u<(z)

κ
+ o(κ−1), (4.10)

where the subscript ‘<’ refers to the domain z < 0. Substituting (4.10) into (4.1), we obtain, to leading
order,

d

dz

(
κ

1 + eu<

du<

dz

)
= 0. (4.11)

Therefore, in this intermediate region the nonlinear part of the diffusion coefficient is not constant (as it
is for ζ away from ζs), but it is not so small that the D∗ term comes into play (as it does in the η region).

Solving (4.11) subject to the matching condition in (4.9) (rewritten in the u< variable), we have

u<(z) = −2ζsCT|z| − log(1 − e−2ζsCT|z|),

C<(ζ ) = CT − 2ζsCT(ζ − ζs) + 1

κ
log(1 − e−2κζsCT(ζs−ζ )). (4.12)

In order to match C< to Cw, we expand the latter [as given in (3.15)] for ζ near ζs:

Cw(ζ ) ∼ CT − 2CTζs(ζ − ζs), ζ → ζ−
s . (4.13)

The first two terms of (4.12) match (4.13); hence the uniform solution for these two regions is given by

C(ζ ) = 1 − (1 − CT)
erf ζ

erf ζs
+ 1

κ
log(1 − e−2κζsCT(ζs−ζ )). (4.14)

4.3 Matching the wet intermediate layer to the corner layer

Equation (4.14) is good for ζ away from ζs. To construct the uniform solution, we must find the com-
mon part that arises when we match this to the corner-layer solution. As ζ → ζ−

s , the argument of the
logarithm tends to zero, which exactly matches the behaviour described in (4.9). Rewriting the leading
order of (4.9) in terms of the outer variable, we have

Cc(ζ ) ∼ CT + 1

κ
log(2ζsCTκ(ζs − ζ )), ζ → ζ−

s , (4.15)

which forms the common part. (Note that again the A contribution is subdominant.)
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Hence the uniform solution for negative ζ < ζs is given by

C(ζ ) = 1 − (1 − CT)
erf ζ

erf ζs
+ 1

κ
log

(
1 − e−2κζsCT(ζs−ζ )

2κζsCT(ζs − ζ )

)
− log κ

κ
− uc(η)

κ
, ζ < ζs. (4.16)

As ζ → ζ−
s , the argument of the logarithm in (4.16) goes to 1, so the blowup inherent in (4.14) no longer

occurs. For ζ away from ζs, the logarithm term gets large, but is multiplied by the κ−1 term, eventually
producing another term of O((log κ)/κ).

5. Solution analysis

5.1 Discussion of correction terms

To plot the solution, we need the parameter values in (3.17a). Motivated by the calculations in Guo et al.
(2011), we choose κ = 100. Note that with such a definition of κ , one could argue that C − CT = o(1)

throughout the wet region. However, as we can solve the problem without this assumption, we do not
impose it.

To determine the importance of the parameter A, we note from (4.9) that the term including A (which
is the one not included in the matching) is O(κ−2) in the wet region. However, the error we make by
approximating D(C)/Dw in (3.6) by 1 in (3.14) is O(κ−1). Hence the expansion for the solution in the
wet region would be of the form:

Cw(ζ ) = 1 − (1 − CT)
erf ζ

erf ζs
+ κ−1uw(ζ ) + o(κ−1), (5.1)

and the contribution from the A term is subdominant. Also from (4.7), we have that the term including A
is O(κ−1) in the dry region. Hence to get just the leading-order solution, we may take A = 0. The graph
is shown in Fig. 3, which illustrates the solution for various values of D∗.

The graph looks physical in the wet region, and it can be shown that C(0) ≈ 1 − 2κ−2, as would
be expected by ignoring the contribution from A. However, the graph goes negative in the dry region.
The reason can be seen from (4.7), where the largest unmatched term is −(log κ)/κ . Hence in the dry
intermediate layer, the proper expansion is

C(z) = CT exp

(
−2ζsz

D∗

)
+ log κ

κ
u>(z) + o

(
log κ

κ

)
, z > 0. (5.2)

As long as C is bounded away from CT, the operator in (2.7a) holds at all orders (in other words, Cd is
transcendentally small). Hence we have that

u>(∞) = 0. (5.3a)

At the corner layer, u> must match with the currently unmatched −(log κ)/κ term, so we have

u>(0) = −1. (5.3b)
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Fig. 3. Leading-order uniform similarity solution vs. ζ for Cartesian case. In increasing order of thickness: D∗ = 1, 0.1, 0.01.

As long as C is bounded away from CT, the operator in (3.10) holds at all orders. Hence the solution
for u>(z) is exactly analogous to (3.12), the solution in the dry intermediate layer is now given by

C(z) =
(

CT − log κ

κ

)
exp

(
−2ζsz

D∗

)
, z > 0,

and the uniformly valid solution analogous to (4.8) is

C(ζ ) = CT

[
exp

(
−2ζsκ(ζ − ζs)

D∗

)
+ 2ζsκ(ζ − ζs)

D∗

]
− log κ

κ
exp

(
−2ζsz

D∗

)
− uc(η)

κ
, ζ > ζs.

(5.3c)

The graph including u>(z) is shown in Fig. 4; note that the solution remains positive and smooth,
as desired. As D∗ increases, the diffusion coefficient in the dry region becomes larger. This causes the
profile to decay over a larger region, as more diffusion takes place in the dry intermediate layer. For
D∗ = 1, there is a ‘shoulder-like’ profile to the graph, as the very sharp bend in the curve in the corner
layer connects to a much wider profile in the dry region. This profile is indicative of experimental data
for these systems (Tezuka et al., 1991, 1999; Wang et al., 2004; Wang & Smela, 2009).

5.2 Comparison with numerics

In order to validate our asymptotic solution, we match it to numerical simulations using the algorithm in
Edwards (2013). Here as in Edwards (2013) we take D∗ = 0.01 in order to compare with the results in
Guo et al. (2011). The results are shown in Fig. 5. Note that the front progresses from right to left (recall
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Fig. 4. Uniform similarity solution vs ζ for Cartesian case, including u>. In increasing order of thickness: D∗ = 1, 0.1, 0.01.
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C vs. x for various t

t=  3.84

t= 15.36

t= 34.56

t= 61.44

t= 96.00

Fig. 5. Numerical (symbol) and asymptotic (line) concentration profiles for D∗ = 0.01.

that ζ is oriented opposite to x). Given the
√

t behaviour of s, the time intervals have been chosen so that
the front moves a fixed amount between curves. Note the close agreement between the numerical and
asymptotic solutions, with significant differences visible only for the last time snapshot. (Recall from
(3.17b) that tmax = 96.6552.) As the main case of experimental interest is the progression of the wet/dry
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Fig. 6. Repeating cell from experimental setup. Concentration is zero to leading order in shaded areas.

interface through the bulk of the domain, we relegate a discussion of what happens for t near and greater
than tmax to the appendix.

Though the asymptotic solutions used in Edwards (2013) and this manuscript are different, Fig. 5
shows a striking similarity to Fig. 4 in Edwards (2013). The similarity may be explained by noting that
in that paper, the author ignored the u>(z) term, but chose A to match the numerical and asymptotic
solutions at the first time step, which essentially forced C(∞) = 0. Thus the matching term −A/κD∗
from (4.7) must equal (log κ)/κ so that the far-field asymptotic solution would be zero. Setting these
two terms equal and using the given numerical parameters, we have

A = −D∗ log κ = −0.0461. (5.4)

This is actually the value of A found by the author in Edwards (2013); the value quoted in the paper has
a typographical error.

6. Polar coordinates

In the real experimental system, the ionic clusters diffuse from a square array of copper posts; these are
called ECL ‘nucleation sites’ or ‘triggers’ in the literature (Guo et al., 2011). This produces a series of
repeating cells with point sources at the corners (see Fig. 6). Hence the Cartesian model postulated in
Guo et al. (2011) and analysed above is a representation of a one-dimensional slice of the polymer (for
instance, at y = 0 in Fig. 6). We conclude by presenting some preliminary results on the full system in
polar coordinates. For simplicity, we focus on deriving uniformly valid solutions for the time when the
wet and dry polymer stages coexist.

6.1 Governing equations

Owing to the nature of the repeating cell, all the boundaries of the square shown in Fig. 6 are lines of
symmetry, as are the dashed lines. The form of D(C) may still initially be taken piecewise constant as
in (2.4). Moreover, with Dd still taken to be small, equation (3.1) still holds. Hence in the dry region
(shaded in Fig. 6), the leading-order concentration remains zero, and a similarity approach may work.
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Hence we introduce polar coordinates with the origin centred at the source in the lower-left corner
of the square, so the waves move from left to right in this formulation. There is no angular dependence
in the problem until the time at which the expanding disks coalesce. Consideration of this interval is
beyond the scope of this manuscript. Hence we may rewrite the concentration as C(r, t), leading to the
following equation which replaces (2.1a):

∂C

∂t
= 1

r

∂

∂r

[
D(C)r

∂C

∂r

]
, r > r0, (6.1)

where r0 is the radius of the posts.

6.2 The piecewise solution

In the limit that κ → ∞, diffusion of Cd is given by

∂Cd

∂t
= Dd

r

∂

∂r

(
r
∂Cd

∂r

)
, r > s(t). (6.2)

Since Dd → 0, (3.1) still holds for Cd. Hence so does (3.2), rewritten in the proper variables:

Cd(r, t) = 0, r > s(t). (6.3)

As before, this solution motivates a similarity-variable approach. Therefore, we let

ζ = r − r0

2
√

Dwt
�⇒ s(t) = r0 + 2ζs

√
Dwt. (6.4)

Substituting (6.4) into the full equation (6.1) as well as the boundary condition (2.9), we have

d

dζ

(
ζ

D(C)

Dw

dC

dζ

)
+ 2ζ 2 dC

dζ
= 0, 0 < ζ < ζs, (6.5)

Dd
dCd

dζ
(ζ+

s ) = (Dw + Dd)
dCw

dζ
(ζ−

s ). (6.6)

Note that (6.6) is of the same form as (3.8). In addition, (3.7b) still holds.
We cannot solve the problem in the wet region without a proper flux condition in the front, which

requires solving in the dry intermediate layer. To do so, we again introduce the variables in (3.9). Making
these substitutions into (6.5), we obtain (3.10) to leading order. When introducing a layer very near a
surface, its curvature can be ignored, and hence the polar and Cartesian intermediate-layer equations are
identical. As the matching conditions are the same as before, the solution for C> is again given by (3.12).
With the solution thus determined, the flux condition (6.6) [which is the same as (3.8)] becomes (3.13).

In the wet region, (6.5) becomes

d

dζ

(
ζeζ 2 dCw

dζ

)
= 0,

which has solutions

Cw(ζ ) = AE1(ζ
2)

2
+ B, E1(ζ

2) =
∫ ∞

ζ 2

e−y

y
dy. (6.7)
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Here E1 is the exponential integral, which blows up logarithmically as ζ → 0 (see Abramowitz & Ste-
gun, 1972, Section 5). Hence a Dirichlet condition Cw(0) = 1 as posited in the Cartesian case will lead to
the non-physical similarity-variable solution Cw = 1 everywhere, and no boundary layer can be inserted.

This is because as t gets larger, the source most propagate a similarity solution over a larger and
larger area. The two-dimensional analogue of the one-dimensional Cartesian case has a line of sources
fixed at C = 1, while in our case we have only a point. Thus, we now posit that the electrode provides a
steady source 2πQ over time. Hence we have that, to leading order

d

dt

∫ 2π

0

∫ ∞

r0

rC(r, t) dr dθ = 2πQ �⇒ r0
∂Cw

∂r
(r0, t) = − Q

Dw
,

dCw

dζ
(0) = − Q

Dwr0
,

where we have used (6.1) and the fact that there is no flux at infinity. However, the right-hand side above
is finite for any non-zero r0, while the exponential integral has an infinite derivative at ζ = 0. Hence the
only way to admit a similarity-variable solution is to take r0 → 0 and make the post a point source. With
proper normalization, the condition there becomes

lim
r→0

r
∂Cw

∂r
= −1. (6.8)

Then using (3.7b) and (6.8) to find the constants in (6.7), we obtain

Cw(ζ ) = CT + E1(ζ
2) − E1(ζ

2
s )

2
. (6.9)

Obviously the logarithmic singularity in (6.9) is a weakness of the similarity-variable approach to this
problem. Possible ways to remedy this weakness are discussed in Section 7.

Substituting (6.9) into (3.13) (which we have established also holds in polar coordinates), we obtain
an equation for the front parameter ζs:

e−ζ 2
s = 2CTζ 2

s . (6.10)

Note that (6.10) is independent of Dw (since that dependence is scaled away in the definition of ζ ).
Also note that it will have a unique solution, since the left-hand side is strictly decreasing from 1 to 0,
while the right-hand side is strictly increasing from 0 to ∞. In particular, with the value of the physical
parameters given in (3.17), we have

ζs = 0.604, tmax = 6.8443. (6.11)

6.3 The smoothing solution

To smooth the solution in the dry region, we write the full equation (6.5) in the z variable, yielding

κ
d

dz

(
κζs

(
1

1 + e−κ(C−CT)
+ Dd

Dw

)
dC

dz

)
+ 2κζ 2

s

dC

dz
= 0,

which reduces to (4.1). Hence the same η-scalings work and lead to the same solution, namely (4.7)
[and hence (4.8)]. Moreover, since (4.1) still holds, the smoothing in the wet region proceeds as in the
Cartesian case. (Recall that this is because the behaviour of the wet solution must be the same as in
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Fig. 7. Uniform similarity solution vs ζ for polar case including u>. In an increasing order of thickness: D∗ = 1, 0.1, 0.01.
(D∗ = 0.1 case obscured by scale.)

the Cartesian case since the front conditions, which are determined by the dry solution, are the same.)
Hence (4.12) still holds, and the uniform solution for the dry and intermediate-layer regions is given by

C(ζ ) = CT + E1(ζ
2) − E1(ζ

2
s )

2
+ 1

κ
log(1 − e−2κζsCT(ζs−ζ )), (6.12)

which replaces (4.14). The remainder of the matching to the corner layer is the same, and hence the final
uniform solution for ζ < ζs is given by

C(ζ ) = CT + E1(ζ
2) − E1(ζ

2
s )

2
+ 1

κ
log

(
1 − e−2κζsCT(ζs−ζ )

2κζsCT(ζs − ζ )

)
− log κ

κ
− uc(η)

κ
, ζ < ζs. (6.13)

In Fig. 7, we plot the radial similarity solution using the same parameters as in Section 5. Owing
to the logarithmic blowup of the solution required to keep the flux constant, the ζ -axis is truncated
away from ζ = 0. However, even in this graph C increases far past the maximum value of C = 1 in the
Cartesian case.

7. Conclusions and further research

Scientists would like to understand and predict the phenomenon of electrogenerated chemiluminescence
better. This is especially important since experimental data have shown regimes where the propagating
ECL wave moves like both t and t1/2 (Tezuka et al., 1991; Wang et al., 2004; Wang & Smela, 2009). A
more detailed understanding of the dynamics should determine whether the discrepancy is due to exper-
imental noise or due to the underlying polymeric structure of the films. Though diffusion in polymers
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can exhibit sharp fronts moving with constant speed (Thomas & Windle, 1982), other effects, such as
viscoelastic memory effects, must be incorporated into the model (Edwards, 1995).

In Guo et al. (2011), the authors propose a nonlinear Fickian-type model for ECL waves, and claim
that their simulations show the model allows for constant front speed. In this work, we examined the
model asymptotically and demonstrated that though the nonlinear diffusion coefficient does produce
sharp fronts, those fronts still move proportional to t1/2. We find the numerical results in Guo et al.
(2011) suspect, as their front speed decreases inversely with the step size Δx of their simulations.

Because diffusion in the dry region of the polymer is essentially negligible, the operator in the outer
region can be posed in the style of a one-phase Stefan problem. Hence a similarity-variable approach
can be used, guaranteeing the t1/2 front behaviour. In the limit of large κ , four regimes of interest were
identified.

There is an intermediate layer of width O(κ−1) in the dry region which links the front value CT

to the outer dry solution Cd = 0. This layer then causes an O(1) balance in the flux, which provides
enough conditions on the operator in the outer wet region to close the system. The solution in the outer
wet region is a standard error-function profile.

The combination of these two solutions has a discontinuous derivative at the front, which occurs
because the diffusion coefficient had been taken to be piecewise constant. Considering the full structure
of D(C) in (2.1b) leads to a corner layer of width O(κ−2) about the front to smooth the solution. The
corner-layer solution blows up logarithmically as it enters the wet region. Hence an intermediate layer
is also needed in the wet region to match the corner-layer solution to the outer wet solution. The full
uniform solution profile matches numerical (Edwards, 2013) and experimental results (Tezuka et al.,
1991, 1999; Wang et al., 2004; Wang & Smela, 2009).

The true experimental setup has a series of posts (point sources) in a square array. This motivates
a polar-coordinate approach, at least until the time at which the ELC waves coalesce. Moving to polar
coordinates requires a modification of the nucleation condition. Since the governing operator in the
layer is independent of curvature, all of the layer solutions are the same for both the Cartesian and polar
coordinate systems. It is only the wet solution which is different, and it can be represented in terms of
the exponential integral.

The similarity solution thus derived, though providing useful results away from the posts, blows
up logarithmically at the origin. One way to remedy this defect would be to restate the problem as a
singular boundary-value problem (cf. Kevorkian & Cole, 1996, Section 3.3) with conditions given at
r = O(κ−1), and meld this solution to the similarity-variable approach.

It should be emphasized that the results in this manuscript do not rule out constant front speed in
ELC polymer systems. Rather, the model in Guo et al. (2011) cannot capture such behaviour, and more
complicated models including effects such as viscoelasticity would be necessary.
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Appendix A. Wet-only solution in Cartesian geometry

For completeness, we discuss what happens in the Cartesian geometry near and after tmax. As shown in
Fig. 5, as t → t−max, the front approaches x = 0, and the similarity solution does not satisfy the boundary
condition there. Hence a boundary layer near x = 0 would need to be inserted for t near t−max. Such a
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boundary-layer expansion is beyond the scope of this manuscript, as the main case of experimental
interest is the progression of the wet/dry interface through the bulk of the domain.

Note that the boundary layer would be only in the derivative, and hence in the outer region away
from zero we have that

C(x, tmax) = 1 − (1 − CT)
erf ζs(1 − x)

erf ζs
, (A.1)

where we have used (3.3).
To construct the solution in the wet-only region where t > tmax, we introduce the variable substitution

τ = t − tmax. The operator for C is invariant under translation, so (2.8) holds on the entire domain
0 < x < 1. Since the entire polymer is wet, (2.3a) now applies. The initial condition for the problem is
given by (A.1), which holds at τ = 0.

Using standard Fourier series techniques, we may write the leading-order solution as

Cw(x, τ) = 1 −
∞∑

n=0

φn exp
(−Dwλ2

nτ
)

cos λnx, λn = (2n + 1)π

2
, (A.2)

where we have used the fact that Dd � 1. Hence any boundary layer in the derivative near x = 0 for
t < tmax will become moot for t > tmax and the purely diffusive operator applies.

The φn are given by the initial conditions:

φn = 2(1 − CT)

erf ζs

∫ 1

0
erf ζs(1 − x) cos(λnx) dx.

After some tedious manipulations, we find that

φn = 4CTζs

λn
�[D(αn)], D(αn) = e−α2

n

∫ αn

0
ey2

dy, (A.3a)

αn = λn

2ζs
− iζs, (A.3b)

where we have used (3.16). Here D is Dawson’s integral, as defined by Abramowitz & Stegun (1972,
Section 7).

The Fourier series approach provides a useful solution for large τ , as the fast decay of the exponen-
tials in (A.2) minimizes the number of terms that need be calculated. For small τ , we use the approach
in Carrier & Pearson (1988, Section 2.3), wherein one expands the Laplace transform of the solution
for large p, which corresponds to a series solution good for small τ .

Taking the Laplace transform of (2.8) subject to (A.1) yields a forced second-order ODE for the
transform. Using Green’s function approach to solve the problem and expanding the resulting expression
for large transform variable p, we have the following:

Ĉw(x) = 1

p
− (1 − CT)

p erf ζs

[
erf ζs(1 − x) + q̂(x)

2

]
, (A.4a)

q̂(x) ∼ −4ζse
−ζ 2

s

√
Dw

πp

∞∑
n=0

(−1)n[e−(x+2n)
√

p/Dw − e−(2−x+2n)
√

p/Dw ]. (A.4b)
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Fig. 8. Cw vs x for (in increasing order of thickness) τ = 3/73, 3/72, 3/7, 3, 21. Dashed curves: Cw as given by (A.2) and (A.3).
Dotted curves: Cw as given by (A.5).

Combining (A.4) and inverting, we have the following:

Cw(x, τ) = 1 − (1 − CT)

erf ζs

{
erf ζs(1 − x) − 2ζse

−ζ 2
s

√
Dw

π

∞∑
n=0

(−1)n

×
[

2

√
τ

π
exp

(
− (x + 2n)2

4Dwτ

)
− x + 2n√

Dw
erfc

(
x + 2n

2
√

Dwτ

)

− 2

√
τ

π
exp

(
− (2 − x + 2n)2

4Dwτ

)
+ 2 − x + 2n√

Dw
erfc

(
2 − x + 2n

2
√

Dwτ

)]}
. (A.5)

The two solution forms are compared in Fig. 8, which shows both the Fourier (long-τ ) and Laplace
(short-τ ) series solutions together for various values of τ . Note the similarity between the two curves,
with small differences appearing only for very small and large τ .

Appendix B. Nomenclature

B.1 Variables and parameters

The equation where a quantity first appears is listed, if appropriate.

A constant in corner-layer solution (4.6)
C(·, t) concentration of ionic clusters (2.1a)
D(αn) Dawson’s integral (A.3a)
D(C) diffusion coefficient (2.1b)
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p Laplace transform variable (A.4a)
q̂(x) portion of Laplace series solution (A.4b)
�(·) real part (A.3a)
r radius (6.1)
s(t) front separating the dry and wet polymer regions
t time
u(·) layer solution, written as deviation from CT (4.2)
x distance
y dummy variable
Z the integers
z intermediate-layer variable near front (3.9)
αn shifted eigenvalue (A.3b)
ζ similarity variable (3.4)
η internal-layer variable (4.2)
κ perturbation parameter characterizing speed of transition and size of dry

diffusion coefficient (2.1b)
λn eigenvalue for series solutions (A.2)
τ time after tmax

φn parameter in Fourier series solution (A.2)

B.2 Other notation

c as a subscript, used to indicate the corner-layer solution (4.2)
d as a subscript, used to indicate the dry polymer (2.1b)
max as a subscript on t, used to indicate the time when the polymer saturates (3.3)
n ∈Z as a subscript, used to index modes in the post-coalescence series solutions (A.2)
s as a subscript on ζ , used to indicate the front separating the dry and wet polymer regions (3.4)
T as a subscript on C, used to indicate the saturation concentration (2.1b)
w as a subscript, used to indicate the wet polymer (2.1b)
0 as a subscript on r, used to indicate the post boundary (6.1)
* as a subscript on D, used to indicate the scaled dry diffusion coefficient (2.6)
> as a subscript on C, used to indicate the intermediate-layer solution in the wet region (3.9)
ˆ used to indicate the Laplace transform (A.4a)
< as a subscript on C, used to indicate the intermediate-layer solution in the wet region (4.10)
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