Homework Set 6 Solutions

1. (31 points) For the following problem:

\[\ddot{u} + u - \epsilon u^2 = \epsilon \cos t, \quad 0 < \epsilon \ll 1, \] \hspace{1cm} (6.1)

calculate the following:
(a) the proper expansion for \(u(t; \epsilon) \),
(b) the proper slow-time scale \(\tau \), and
(c) the proper evolution equations for \(A_0(\tau) \) and \(B_0(\tau) \).

You should also use Mathematica or Maple to graph the phase plane of \(A_0 \) and \(B_0 \).

Solution. The key to this problem is to balance the effects of the nonlinearity on the left-hand side with the forcing on the right-hand side. It should be clear that a regular perturbation expansion of the form

\[u = u_0 + \epsilon u_1 + \cdots \]

will fail at \(O(\epsilon) \) due to the forcing on the right-hand side since the initial conditions are arbitrary. This might lead one to conclude that

\[u(t; \epsilon) = \sum_{n=0}^{\infty} \epsilon^n F_n(T, \tau), \quad \tau = \epsilon t, \quad T = t \left(1 + \sum_{n=2}^{\infty} \epsilon^n \omega_n\right). \]

As in class, we let

\[g(t; \epsilon) = F_0(T, \tau) + \epsilon F_1(T, \tau) + o(\epsilon), \quad T = t \left[1 + O(\epsilon^2)\right]. \]

Substituting these expressions into (6.1), we have, to leading orders,

\[
\frac{\partial}{\partial T} \left[\frac{\partial}{\partial T} (F_0 + \epsilon F_1) + \epsilon \frac{\partial F_0}{\partial \tau} \right] + \epsilon \frac{\partial}{\partial \tau} \left(\frac{\partial F_0}{\partial T} \right) + F_0 + \epsilon F_1 + \epsilon^2 F_2 - \epsilon (F_0 + \epsilon F_1)^2 = \epsilon \cos T.
\]

Expanding and taking only the terms to \(O(\epsilon) \), we have

\[\frac{\partial^2 F_0}{\partial T^2} + F_0 = 0, \hspace{1cm} O(1) \]

\[\frac{\partial^2 F_1}{\partial T^2} + 2 \frac{\partial^2 F_0}{\partial T \partial \tau} + F_1 - F_0^2 = \cos T, \hspace{1cm} O(\epsilon) \]
Solving our equations one at a time, we have
\[
F_0 = A_0(\tau) \cos T + B_0(\tau) \sin T,
\]
\[
\frac{\partial^2 F_1}{\partial T^2} + F_1 = (A_0 \cos T + B_0 \sin T)^2 + \cos T - 2(-A_0 \sin T + B_0' \cos T)
\]
\[
\frac{\partial^2 F_1}{\partial T^2} + F_1 = (1 - 2B_0') \cos T + \frac{A_0^2 + B_0'^2}{2} + A_0B_0 \sin 2T + \frac{(A_0^2 - B_0'^2) \cos 2T}{2} + 2A_0' \sin T.
\]
Therefore, we see that we have no way to suppress secularity, since to do so would make B_0 blow up as $\tau \to \infty$.

Hence we try to scale the problem. Since B_0 blew up in our first try, we expect large oscillations, so we let $u = \epsilon^{-\alpha} y$, where we expect $\alpha > 0$:
\[
\epsilon^{-\alpha} \ddot{y} + \epsilon^{-\alpha} y - \epsilon^{1-2\alpha} y^2 = \epsilon \cos t
\]
\[
\ddot{y} + y - \epsilon^{1-\alpha} y^2 = \epsilon^{1+\alpha} \cos t.
\]
We now closely examine the operator on the left-hand side. Since $\alpha < 0$, $\epsilon^{1+\alpha} \ll \epsilon^{1-\alpha} \ll 1$.

To simplify some of the algebra, we let
\[
\delta_1 = \epsilon^{1-\alpha}, \quad \delta_2 = \epsilon^{1+\alpha}
\]
into the above to obtain
\[
\ddot{y} + y - \delta_1 y^2 = \delta_2 \cos t.
\]
Since we are just trying to determine the appropriate scalings, for now we just assume the following initial conditions:
\[
y_0(0) = a, \quad \dot{y}(0) = 0.
\]
Letting $y(t; \delta_1) \sim y_0(t) + \delta_1 y_1(t) + \delta_1^2 y_2(t) + \cdots$, we have
\[
\frac{d^2}{dt^2} (y_0 + \delta_1 y_1 + \delta_1^2 y_2) + (y_0 + \delta_1 y_1 + \delta_1^2 y_2) + \delta_1 (y_0 + \delta_1 y_1)^2 = \delta_2 \cos t
\]
\[
\dot{y}_0 + y_0 = 0, \quad y_0(0) = a, \quad \dot{y}_0(0) = 0, \quad O(1)
\]
\[
\ddot{y}_1 + y_1 + y_0^2 = 0, \quad y_1(0) = 0, \quad \dot{y}_1(0) = 0. \quad O(\delta_1)
\]
Solving our equations in turn, we have
\[
y_0 = a \cos t,
\]
\[
\ddot{y}_1 + y_1 = -a^2 \cos^2 t = -\frac{a^2}{2} - \frac{a^2 \cos 2t}{2}
\]
\[
y_1 = -\frac{a^2}{2} + \frac{a^2 \cos 2t}{6} + A \cos t + B \sin t
\]
\[
= -\frac{a^2}{2} + \frac{a^2 \cos 2t}{6} + \frac{a^2 \cos t}{3}.
\]
Therefore, we see that the first secular-causing term from the operator won’t occur until \(O(\delta_1^2)\). This happens because we see that in (B) squaring a trigonometric term does not cause a problem. (The solution would still be okay at \(O(\epsilon)\) if we had both \(\sin\) and \(\cos\) terms.) We would like to suppress the secular-causing term from the right-hand side at the same time, so we let

\[
\delta_1^2 = \delta_2 \quad \implies \quad \epsilon^{2-2\alpha} = \epsilon^{1+\alpha} \quad \implies \quad \alpha = \frac{1}{3}.
\]

Substituting the above result into (A), we obtain

\[
\ddot{y} + y - \epsilon^{2/3} y^2 = \epsilon^{4/3} \cos t,
\]

and the correct expansion is given by

\[
u(t; \epsilon) = \epsilon^{-1/3} y(t; \epsilon), \quad y(t; \epsilon) = \sum_{n=0}^{\infty} \epsilon^{2n/3} F_n(T, \tau),
\]

\[
\tau = \epsilon^{4/3} t, \quad T = t \left(1 + \epsilon^{2/3} \omega_1 + \sum_{n=3}^{\infty} \epsilon^{2n/3} \omega_n\right),
\]

where the \(\epsilon^{4/3}\) scaling on \(\tau\) is motivated by the fact that the secularity doesn’t occur until the second order in the expansion.

Substituting this expression into (C), we have, to leading orders,

\[
(1 + \omega_1 \epsilon^{2/3}) \frac{\partial}{\partial T} \left[(1 + \omega_1 \epsilon^{2/3}) \frac{\partial}{\partial T} (F_0 + \epsilon^{2/3} F_1 + \epsilon^{4/3} F_2) + \epsilon^{4/3} \frac{\partial F_0}{\partial \tau}\right] + \epsilon^{4/3} \frac{\partial}{\partial \tau} \left(\frac{\partial F_0}{\partial T}\right)
\]

\[
+ F_0 + \epsilon^{2/3} F_1 + \epsilon^{4/3} F_2 - \epsilon^{2/3} (F_0 + \epsilon^{2/3} F_1)^2 = 0.
\]

Expanding and taking only the terms to \(O(\epsilon^{4/3})\), we have

\[
\frac{\partial^2 F_0}{\partial T^2} + F_0 = 0, \quad O(1)
\]

\[
\frac{\partial^2 F_1}{\partial T^2} + F_1 + 2 \omega_1 \frac{\partial^2 F_0}{\partial T \partial \tau} - F_0^2 = 0, \quad O(\epsilon^{2/3})
\]

\[
\frac{\partial^2 F_2}{\partial T^2} + F_2 + 2 \frac{\partial^2 F_0}{\partial T \partial \tau} + 2 \omega_1 \frac{\partial^2 F_1}{\partial T \partial T} - 2 F_0 F_1 + \omega_1 \frac{\partial^2 F_0}{\partial T^2} = \cos T, \quad O(\epsilon^{4/3})
\]

We need only the leading order of our boundary conditions:

\[
F_0(0, 0) = a, \quad \frac{\partial F_0}{\partial T}(0, 0) = 0.
\]

Now we solve our equations one at a time:

\[
F_0 = A_0(\tau) \cos T + B_0(\tau) \sin T, \quad A_0(0) = a, \quad B_0(0) = 0.
\]
\[
\frac{\partial^2 F_1}{\partial T^2} + F_1 = -2\omega_1 (A_0 \cos T + B_0 \sin T) + (A_0 \cos T + B_0 \sin T)^2
\]
\[
\frac{\partial^2 F_1}{\partial T^2} + F_1 = -2\omega_1 (A_0 \cos T + B_0 \sin T) + \frac{A_0^2 + B_0^2}{2} + A_0 B_0 \sin 2T + \frac{(A_0^2 - B_0^2) \cos 2T}{2}.
\]

We see that in order to suppress secularity we must have \(\omega_1 = 0\), and then we have
\[
F_1 = \frac{A_0^2 + B_0^2}{2} - \frac{A_0 B_0 \sin 2T}{3} - \frac{(A_0^2 - B_0^2) \cos 2T}{6} + A_1(\tau) \cos T + B_1(\tau) \sin T.
\]

Going to the next order and recalling that \(\omega_1 = 0\), we have
\[
\frac{\partial^2 F_2}{\partial T^2} + F_2 = \cos T - 2 \frac{\partial^2 F_0}{\partial T \partial \tau} + 2F_0 F_1
\]
\[
\frac{\partial^2 F_2}{\partial T^2} + F_2 = \cos T - 2 (B_0' \cos T - A_0' \sin T) + 2 (A_0 \cos T + B_0 \sin T) \times
\]
\[
\left[\frac{A_0^2 + B_0^2}{2} - \frac{A_0 B_0 \sin 2T}{3} - \frac{(A_0^2 - B_0^2) \cos 2T}{6} \right] + \text{acceptable terms}
\]
\[
= 2 \left[\frac{1}{2} - B_0' + \frac{A_0(A_0^2 + B_0^2)}{2} - \frac{A_0(A_0^2 - B_0^2)}{12} - \frac{A_0 B_0^2}{6} \right] \cos T
\]
\[
+ 2 \left[A_0' + \frac{B_0(A_0^2 + B_0^2)}{2} + \frac{B_0(A_0^2 - B_0^2)}{12} - \frac{A_0^2 B_0}{6} \right] \sin T
\]
\[
+ \text{acceptable terms}.
\]

Therefore, we see that both bracketed terms must be set equal to zero to suppress secularity:
\[
B_0' = \frac{1}{2} + \frac{5A_0(A_0^2 + B_0^2)}{12}, \quad (D.1)
\]
\[
A_0' = -\frac{5B_0(A_0^2 + B_0^2)}{12}. \quad (D.2)
\]

Equations (D) cannot be easily solved in closed form; the phase plane is given below. The coordinates of the center are given where both \(A_0'\) and \(B_0'\) are zero, so we have
\[
-2^{1/2} = \frac{1}{2} + \frac{5A_0(A_0^2 + B_0^2)}{12},
\]
\[
0 = \frac{5B_0(A_0^2 + B_0^2)}{12}.
\]

Hence the solutions
\[
A_0(\tau) \equiv -\left(\frac{6}{5} \right)^{1/3}, \quad B_0(\tau) \equiv 0,
\]
are steady-states, as suggested in the remarks. The phase plane is shown below. Note that even when we start at the origin, we obtain a large oscillation.
2. Above is shown a graph of the \((\delta, \epsilon)\) plane for the standard Mathieu equation. Now consider the Mathieu equation with an extra term added:

\[u'' + 2\beta u' + (\delta + \epsilon \cos t)u = 0, \quad |\epsilon| \ll 1, \]

(6.2)

where \(\beta\) is a constant. We wish to see how the stability diagram for \(\beta = 0\) changes when \(\beta \neq 0\).
(a) (3 points) By introducing a new variable \(v \), one can reduce the equation (6.2) for \(u \) to the standard Mathieu equation for \(v \) (perhaps with different parameters). Determine the relationship between \(u \) and \(v \).

Solution. The \(\beta \) term should introduce exponential growth or decay, so we let \(u = e^{\alpha t} v \) in (6.2) to obtain

\[
\alpha^2 e^{\alpha t} v + 2\alpha e^{\alpha t} v' + e^{\alpha t} v'' + 2\beta (\alpha e^{\alpha t} v + e^{\alpha t} v') + (\delta + \epsilon \cos t)e^{\alpha t} v = 0
\]

\[
v'' + 2(\beta + \alpha)v' + (\alpha^2 + 2\alpha\beta + \delta + \epsilon \cos t)v = 0.
\]

Therefore, by setting \(\alpha = -\beta \), we obtain

\[
v'' + (\delta - \beta^2 + \epsilon \cos t)v = 0.
\]

(b) (6 points) Explain why if \(\beta \) is “large,” the solution will be dominated by the linear damping/growth term. Determine “large” for each of the special values \(n^2/4 \) of \(\delta_0 \).

Solution. Since \(u = e^{-\beta t} v \), we see that the \(e^{-\beta t} \) term will dominate unless \(\beta t \) is on the order of the slow-time scales established for the standard Mathieu equation. Therefore, for \(n > 1 \), any \(\beta > O(\epsilon^2) \) will cause the linear term to dominate, and for \(n \leq 1 \), any \(\beta > O(\epsilon) \) will cause the linear term to dominate.