Homework Set 2

Read sections 2.1 and 2.2.

The Random Walk

1. Consider the ruin problem. Suppose that a gambler starts with wealth \(w \), and plays a game where in each round he wins 1 with probability \(p \), and loses 1 with probability \(1 - p \). The game is assumed to last until the gambler loses all his money.

 (a) (5 points) Let \(P(w) \) be the probability that the gambler loses all his money, given a wealth of \(w \). Explain why

 \[
 P(w) = pP(w + 1) + (1 - p)P(w - 1),
 \]

 and calculate the boundary conditions \(P(0) \) and \(P(\infty) \).

 Equations of the form (2.1) are called second-order constant-coefficient homogeneous linear difference equations; they have solutions of the form

 \[
 P(w) = c_1 \lambda_1^w + c_2 \lambda_2^w
 \]

 for some constants \(c_j \), \(\lambda_j \). (Note the similarity to the solution for an ODE.)

 (b) (4 points) Find the \(\lambda_j \) that satisfy (2.1).

 (c) (9 points) Using your answer to (b) and the boundary conditions you derived in (a), show that

 \[
 P(w) = \begin{cases}
 1, & p \leq \frac{1}{2}, \\
 \left(\frac{1 - p}{p}\right)^w, & p > \frac{1}{2}.
 \end{cases}
 \]

 Interpret your results in the gambling context.
Continuous Limit

2. We now derive our probability density function using Laplace transform techniques. Consider the equation

$$\frac{\partial u}{\partial t} = -r \frac{\partial u}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2}, \quad u(x, 0) = \delta(x).$$

It can be shown that if we let

$$z = x - rt, \quad u(x, t) = v(z, t),$$

the resulting equation for v is given by

$$\frac{\partial v}{\partial t} = \frac{\sigma^2}{2} \frac{\partial^2 v}{\partial z^2}, \quad v(z, 0) = \delta(z). \tag{2.3}$$

(a) (13 points) Take the Laplace transform of (2.3) to obtain the following system:

$$\frac{\sigma^2}{2} \frac{d^2 \hat{v}}{dz^2} - s \hat{v} = 0, \quad z \neq 0, \tag{2.4a}$$

$$\hat{v}(0^+) = \hat{v}(0^-), \quad \frac{d\hat{v}}{dz}(0^+) - \frac{d\hat{v}}{dz}(0^-) = -\frac{2}{\sigma^2}, \tag{2.4b}$$

where \hat{v} is the Laplace transform of v, and s is the Laplace transform variable. (Hint: Integrate your transformed equation from $z = 0^-$ to $z = 0^+$.) What are reasonable conditions on \hat{v} as $z \rightarrow \pm \infty$?

(b) (9 points) Solve (2.4) and use tables to determine that

$$v(z, t) = \frac{1}{\sigma \sqrt{2\pi t}} \exp \left(-\frac{z^2}{2\sigma^2 t} \right),$$

which matches the results in class.