The Greeks

As discussed in class, the option price for a European call is given by

\[
V(S, \tau) = SN(d_1) - Ke^{-r\tau}N(d_2),
\]

where \(N(\cdot) \) is the cumulative normal probability density function and

\[
d_1 = \frac{\log(S/K) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}, \quad d_2 = \frac{\log(S/K) + (r - \sigma^2/2)\tau}{\sigma\sqrt{\tau}}.
\]

Now we wish to examine the sensitivity of the option prices to various parameters, \textit{i.e.}, the \textit{Greeks}. Note the volatility in these graphs (0.2) is smaller than in the graphs of the call, which is 0.5.

Graph of \(\Delta \) vs. \(S \) for the European call with \(K = 3, \sigma = 0.2, T = 1, r = 0.05 \).

In increasing order of thickness: \(\tau = 0, 1/3, 2/3, 1 \).

As shown in the above diagram, we see that as \(\tau \) decreases (\(t \) increases), \(\Delta \) sharpens until it becomes the Heaviside function, which describes whether the share is needed or not at expiry.
Graph of Γ vs. S for the European call with $K = 3$, $\sigma = 0.2$, $T = 1$, $r = 0.05$.
In increasing order of thickness: $\tau = 0, 1/3, 2/3, 1$.

Graph of Vega vs. S for the European call with $K = 3$, $\sigma = 0.2$, $T = 1$, $r = 0.05$.
In increasing order of thickness: $\tau = 0, 1/3, 2/3, 1$.
Graph of θ vs. S for the European call with $K = 3$, $\sigma = 0.2$, $T = 1$, $r = 0.05$.
In increasing order of thickness: $\tau = 0, 1/3, 2/3, 1$.

Graph of ρ vs. S for the European call with $K = 3$, $\sigma = 0.2$, $T = 1$, $r = 0.05$.
In increasing order of thickness: $\tau = 0, 1/3, 2/3, 1$.