1. (8 points) Consider the following equation on the entire \(x-y \) plane:

\[
\frac{\partial^2 \rho}{\partial x^2} - y^2 \frac{\partial^2 \rho}{\partial y^2} + \frac{\partial \rho}{\partial x} + y = 0.
\]

Classify it and transform it into canonical form. Discuss any singularities that occur in the transformed equations. The domain for each is the entire \(x-y \) plane.

Solution. Using the standard notation for the coefficients, we have \(A = 1, B = 0, \) and \(C = -y^2. \) Therefore, we obtain

\[
\frac{dy}{dx} = \frac{B \pm \sqrt{B^2 - 4AC}}{2A} = \pm \frac{\sqrt{4y^2}}{2} = \pm y
\]

\[
y = \xi e^x, \quad y = \eta e^{-x} \quad \implies \quad y^2 = \xi \eta, \quad y = \text{sgn}(\xi) \sqrt{\xi \eta}
\]

\[
\xi = ye^{-x}, \quad \eta = ye^x.
\]

Thus we have that the equation is hyperbolic except along the \(x \)-axis, in which case it is already in parabolic canonical form. Transforming into canonical form for the case \(y \neq 0, \) we obtain

\[
\partial_x = \frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi} + \frac{\partial \eta}{\partial x} \frac{\partial}{\partial \eta} = -ye^{-x} \frac{\partial}{\partial \xi} + ye^x \frac{\partial}{\partial \eta} = -\xi \frac{\partial}{\partial \xi} + \eta \frac{\partial}{\partial \eta}
\]

\[
\partial_y = \frac{\partial \xi}{\partial y} \frac{\partial}{\partial \xi} + \frac{\partial \eta}{\partial y} \frac{\partial}{\partial \eta} = e^{-x} \frac{\partial}{\partial \xi} + e^x \frac{\partial}{\partial \eta} = \frac{1}{y} \left(\xi \frac{\partial}{\partial \xi} + \eta \frac{\partial}{\partial \eta} \right)
\]

\[
\begin{align*}
\left(-\xi \frac{\partial}{\partial \xi} + \eta \frac{\partial}{\partial \eta} \right)^2 \rho - y^2 \frac{\partial}{\partial y} \left[\frac{1}{y} \left(\xi \frac{\partial \rho}{\partial \xi} + \eta \frac{\partial \rho}{\partial \eta} \right) \right] + \left(-\xi \frac{\partial \rho}{\partial \xi} + \eta \frac{\partial \rho}{\partial \eta} \right) + y = 0 \\
\left(\xi \frac{\partial}{\partial \xi} - \eta \frac{\partial}{\partial \eta} \right)^2 \rho + \left(\xi \frac{\partial \rho}{\partial \xi} + \eta \frac{\partial \rho}{\partial \eta} \right) - \frac{y}{y} \left(\xi \frac{\partial \rho}{\partial \xi} + \eta \frac{\partial \rho}{\partial \eta} \right)^2 \rho + \left(-\xi \frac{\partial \rho}{\partial \xi} + \eta \frac{\partial \rho}{\partial \eta} \right) + y = 0 \\
-4\eta \xi \frac{\partial^2 \rho}{\partial \xi \partial \eta} + 2\eta \frac{\partial \rho}{\partial \eta} + \text{sgn}(\xi) \sqrt{\xi \eta} = 0 \\
\frac{\partial^2 \rho}{\partial \xi \partial \eta} - \frac{1}{2} \frac{\partial \rho}{\partial \eta} - \frac{\text{sgn}(\xi)}{4 \sqrt{\xi \eta}} = 0.
\end{align*}
\]

The only singularities are along the \(\xi \)- and \(\eta \)-axes. But these are never reached, since by (A) they correspond to infinite values of \(x \) when \(y \neq 0. \)
2. (8 points) Consider the canonical form of the elliptic equation:

$$
\frac{\partial^2 \phi}{\partial \xi^2} + \frac{\partial^2 \phi}{\partial \eta^2} + \alpha \frac{\partial \phi}{\partial \xi} + \beta \frac{\partial \phi}{\partial \eta} + \gamma \phi + \delta = 0,
$$

where all the coefficients are constant. Introduce appropriate substitution(s) to reduce (1.1a) to

$$
\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + \epsilon u = 0,
$$

and identify the value of ϵ.

Solution. Letting $\phi(\xi, \eta) = w(\xi, \eta) - \delta/\gamma$, we obtain

$$
\frac{\partial^2 w}{\partial \xi^2} + \frac{\partial^2 w}{\partial \eta^2} + \alpha \frac{\partial w}{\partial \xi} + \beta \frac{\partial w}{\partial \eta} + \gamma \left(w - \frac{\delta}{\gamma} \right) + \delta = 0
$$

$$
\frac{\partial^2 w}{\partial \xi^2} + \frac{\partial^2 w}{\partial \eta^2} + \alpha \frac{\partial w}{\partial \xi} + \beta \frac{\partial w}{\partial \eta} + \gamma w = 0,
$$

which takes care of the constant forcing. Then we let $w(\xi, \eta) = e^{a\xi+b\eta} u(\xi, \eta)$, for some constants a and b. Substituting this expression into the above, we have

$$
\left(a^2 e^{a\xi+b\eta} u + 2ae^{a\xi+b\eta} \frac{\partial u}{\partial \xi} + e^{a\xi+b\eta} \frac{\partial^2 u}{\partial \xi^2} \right) + \left(b^2 e^{a\xi+b\eta} u + 2be^{a\xi+b\eta} \frac{\partial u}{\partial \eta} + e^{a\xi+b\eta} \frac{\partial^2 u}{\partial \eta^2} \right)
$$

$$
+ \alpha \left(ae^{a\xi+b\eta} u + e^{a\xi+b\eta} \frac{\partial u}{\partial \xi} \right) + \beta \left(be^{a\xi+b\eta} u + e^{a\xi+b\eta} \frac{\partial u}{\partial \eta} \right) + \gamma e^{a\xi+b\eta} u = 0.
$$

Cancelling the exponentials, we have

$$
\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + (2a + \alpha) \frac{\partial u}{\partial \xi} + (2b + \beta) \frac{\partial u}{\partial \eta} + (a^2 + b^2 + \alpha a + \beta b + \gamma) u = 0.
$$

Thus, by setting $a = -\alpha/2$, $b = -\beta/2$, we obtain

$$
\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + \left(\frac{\alpha^2 + \beta^2}{4} - \frac{\alpha^2 + \beta^2}{2} + \gamma \right) u = 0
$$

$$
\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + \left(\gamma - \frac{\alpha^2 + \beta^2}{4} \right) u = 0,
$$

which is in the form of (1.1b) with $\epsilon = \gamma - (\alpha^2 + \beta^2)/4$.

3. (8 points) Consider the following problem in polar coordinates (r, θ):

$$
\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} = 0.
$$

If the domain of the problem is an annulus, use separation of variables to find the particular solutions (eigenfunctions) of the problem.
Solution. We let \(f(r, \theta) = R(r)\Theta(\theta) \) in the above to obtain

\[
\begin{align*}
R'' &+ \frac{R'}{r} \Theta + \frac{R}{r^2} \Theta'' = 0 \\
\frac{R''}{R} + \frac{R'}{Rr} + \frac{1}{r^2} \frac{\Theta''}{\Theta} &= 0 \\
r^2 \left(\frac{R''}{R} + \frac{R'}{Rr} \right) &= -\frac{\Theta''}{\Theta}.
\end{align*}
\]

The left-hand side is a function of \(r \) only; the right-hand side is a function of \(\theta \) only. Therefore, both must be constant, which we shall denote by \(\lambda^2 \). We focus on the \(\theta \) equation and note that since the domain is in annulus, the solution must be continuous at \(\theta = 0 \) and \(\theta = 2\pi \). Thus we have

\[
-\frac{\Theta''}{\Theta} = \lambda^2, \quad \Theta(0) = \Theta(2\pi) \\
\Theta'' + \lambda^2 \Theta = 0 \\
\Theta(\theta) = a\sin \lambda \theta + a_c \cos \lambda \theta.
\]

Due to the periodicity conditions, we must have \(\lambda = \pm n \). Hence the \(R \) equation becomes the Euler equation

\[
R'' + \frac{R'}{r} = \frac{n^2}{r^2} R \\
R = r^\alpha \\
\Rightarrow \quad \alpha(\alpha - 1) + \alpha = n^2 \\
(\alpha - n)(\alpha + n) = 0 \\
R(r) = a_+ r^n + a_- r^{-n}
\]

\[
\phi_n(r, \theta) = a_1 r^n \sin n\theta + a_2 r^n \cos n\theta + a_3 r^{-n} \sin n\theta + a_4 r^{-n} \cos n\theta, \quad n \neq 0.
\]

For the case \(n = 0 \), we obtain the double root \(\alpha^2 = 0 \), which implies the addition of a logarithm term. In addition, we see that the sine term vanishes and the cosine term becomes a constant, so we have

\[
\phi_0(r, \theta) = a_1 + a_2 \log r.
\]

Since we are working in an annulus, \(r \) is always bounded away from zero, so all the terms listed are allowable.

4. We wish to define a set of polynomials \(\{T_n(x)\}_{n=0}^\infty \) for \(x \in [-1,1] \) that have the following properties:

(i) \(T_n(x) = \sum_{i=0}^n a_{in} x^i \) is a polynomial of degree \(n \) in \(x \),

(ii) the set \(\{T_n(x)\}_{n=0}^\infty \) is orthogonal with weight function \(\rho(x) = (1-x^2)^{-1/2} \), and
(iii) \(T_n(1) = 1. \)

We wish to prove such a definition is unique using induction.

(a) (2 points) Anchor the induction by constructing \(T_0(x) \) and \(T_1(x) \).

Solution. \(T_0(x) \) is the constant polynomial whose value at \(x = 1 \) is 1, so \(T_0(x) = 1. \) Since \(||T_0|| \neq 0 \), we see that

\[
\langle T_1, T_0 \rangle = \langle a_{11}x + a_{01}, T_0 \rangle = a_{11}\langle x, 1 \rangle + a_{01}||T_0||^2 = a_{01}||T_0||^2 = 0,
\]

where we have used the fact that \(x \rho \) is odd to eliminate the first inner product. But this implies that \(a_{01} = 0 \), which implies that \(a_{11} = 1 \) to satisfy condition (iii). Therefore, \(T_1(x) = x \).

(b) (4 points) Show that if \(T_n(x) \) and \(T^*_n(x) \) both satisfy the definitions above, then \(T_n(x) = T^*_n(x) \).

Solution. In order to calculate the coefficients \(a_{in} \), we must satisfy the following \(n \) orthogonality conditions:

\[
\langle T_n, T_m \rangle = \sum_{i=0}^{n} a_{in} \langle x^i, T_m \rangle = 0, \quad m = 0, 1, \ldots, n - 1, \quad (A.1)
\]

as well as the condition that

\[
T_n(1) = \sum_{i=0}^{n} a_{in} = 1. \quad (A.2)
\]

This is a set of \(n + 1 \) linear equations in the \(n + 1 \) unknowns \(\{a_{in}\}_{0}^{n} \). Therefore, there is either exactly one solution or an infinite number of solutions. If there as infinite number, then there exists another solution

\[
y(x) = \sum_{i=0}^{n} y_n x^i
\]

which satisfies (A.1) and \(y(1) = 0. \) (This is an element of the null space.) Here \(y_n \neq 0 \) because if it did, we would have infinitely many solutions of degree \(n - 1 \), which violates the induction assumption. Let \(T^*_n(x) = T_n(x) - a_{nn}y(x)/y_n \). Since \(T^*_n \) is a linear combination of \(T_n \) and \(y_n \), it too must satisfy the orthogonality and \(T^*_n(1) = 1 \) conditions. But \(T^*_n(x) \) is also of degree \(n - 1 \), which is impossible. Therefore, \(T_n(x) \) is unique.

(c) (3 points) Verify that \(T_n(x) = \cos(n \cos^{-1} x) \).

Solution. By basic complex variables, we have that

\[
T_n(x) = \cos(n \cos^{-1} x) = \Re \left(e^{in \cos^{-1} x} \right) = \Re \left(e^{i \cos^{-1} x} \right)^n = \Re \left(x \pm i \sqrt{1 - x^2} \right)^n.
\]

The real part of the right-hand side must be made up of the sum of products of the form

\[
x^{n-2j}(1 - x^2)^j, \quad j = 0, 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor,
\]
which is a polynomial in \(x \). It is a polynomial of degree \(n \) due to the \(j = 0 \) term. Clearly \(T_n(1) = \cos(n0) = 1 \). To show orthogonality, we let \(x = \cos \theta \) in the integral:

\[
\langle T_m, T_n \rangle = \int_{-1}^{1} \frac{\cos(m \cos^{-1} x) \cos(n \cos^{-1} x)}{\sqrt{1 - x^2}} \, dx = \int_{\pi}^{0} \frac{\cos(n \theta) \cos(m \theta)}{\sin \theta} (-\sin \theta \, d\theta)
\]

\[
= \frac{1}{2} \int_{-\pi}^{\pi} \cos(n \theta) \cos(m \theta) \, d\theta = 0
\]

by the orthogonality of Fourier series (as shown in class).

5. (5 points) Show that the set of functions \(\phi_{n1} = \sin(n \pi x / L) \) is orthogonal respect to the inner product

\[
\langle f, g \rangle = \int_{-L}^{L} f g \, dx
\]

and each has length \(\sqrt{L} \).

Solution.

\[
\langle \phi_{m1}, \phi_{n1} \rangle = \int_{-L}^{L} \sin \left(\frac{m \pi x}{L} \right) \sin \left(\frac{n \pi x}{L} \right) \, dx
\]

\[
= \frac{1}{2} \int_{-L}^{L} \cos \left(\frac{(m - n)\pi x}{L} \right) - \cos \left(\frac{(m + n)\pi x}{L} \right) \, dx
\]

\[
= \frac{1}{2} \left[\frac{L}{(m - n)\pi} \sin \left(\frac{(m - n)\pi x}{L} \right) - \frac{L}{(m + n)\pi} \sin \left(\frac{(m + n)\pi x}{L} \right) \right]_{-L}^{L} = 0,
\]

whenever \(m \neq n \). In the case that \(m = n \), we have

\[
\langle \phi_{n1}, \phi_{n1} \rangle = \frac{1}{2} \int_{-L}^{L} 1 - \cos \left(\frac{2n \pi x}{L} \right) \, dx
\]

\[
||\phi_{n1}||^2 = \frac{1}{2} (2L) = L.
\]