Supplemental Study Material

Solutions (Revised)

1. Let \(f(x; \epsilon) = o(\phi(x; \epsilon)) \) uniformly for \(x \in [0, 1] \). Here \(f \) and \(\phi \) are continuous for \(x \in [0, 1] \) and (at the very least) \(\epsilon > 0 \).

(a) Show that
\[
\int_0^\epsilon f(x; t) \, dt = o\left(\int_0^\epsilon |\phi(x; t)| \, dt \right)
\]
uniformly in \([0, 1]\).

Solution. By the definition of the limit, \(f(x; \epsilon) = o(\phi(x; \epsilon)) \) is equivalent to stating that for any \(\delta > 0 \), there exists an \(\epsilon^* \) such that
\[
\left| \frac{f(x; \epsilon)}{\phi(x; \epsilon)} \right| \leq \delta \quad \implies \quad |f(x; \epsilon)| \leq \delta |\phi(x; \epsilon)|, \quad 0 < \epsilon < \epsilon^*.
\]
The uniformity implies that \(\delta \) is independent of \(x \). Thus we have
\[
\int_0^\epsilon f(x; t) \, dt \leq \int_0^\epsilon |f(x; t)| \, dt \leq \int_0^\epsilon \delta |\phi(x; t)| \, dt = \delta \int_0^\epsilon |\phi(x; t)| \, dt = \delta \left| \int_0^\epsilon |\phi(x; t)| \, dt \right|
\]
where now \(\epsilon \) corresponds to \(\epsilon^* \). In addition, we have
\[
\int_0^\epsilon |f(x; t)| \, dt \geq \left| \int_0^\epsilon f(x; t) \, dt \right| \quad \implies \quad \left| \int_0^\epsilon f(x; t) \, dt \right| \leq \delta \left| \int_0^\epsilon |\phi(x; t)| \, dt \right|
\]
which is simply the relationship in (A) defining the \(o \) relationship between the integrals.

(b) Show that (S.1) does not hold if we remove the absolute value from the right-hand side.

Solution. Here’s a typical counterexample. Let
\[
\phi(x; \epsilon) = \sin(\epsilon - x), \quad f(x; \epsilon) = \epsilon \phi^2.
\]
Clearly \(f \) and \(\phi \) satisfy the continuity assumptions. Then
\[
\lim_{\epsilon \to 0^+} \frac{f(x; \epsilon)}{\phi(x; \epsilon)} = \lim_{\epsilon \to 0^+} \epsilon \sin(\epsilon - x) = 0
\]
uniformly in [0, 1]. Computing the integrals in (S.1) (without the absolute value), we have
\[
\int_0^\epsilon f(x; t) \, dt = \int_0^\epsilon t \sin^2(t - x) \, dt > 0, \quad \epsilon > 0, \\
\int_0^\epsilon \phi(x; t) \, dt = [-\cos(\epsilon - x)]_0^\epsilon = \cos x - \cos(\epsilon - x).
\]
Therefore, we see that if we choose \(x = \epsilon/2 \), the integral on the the right is zero, and hence the relationship does not hold uniformly in \(x \).

2. Consider the following equation:
\[
\tan z = z. \tag{S.2}
\]
(a) Show that for all integral \(n \), there exists exactly one root \(z_n \) of (S.2) in the region \(((n - 1/2)\pi, (n + 1/2)\pi) \).

Solution. In each region \(((n - 1/2)\pi, (n + 1/2)\pi) \), \(\tan z \) takes on all possible values, so there must be at least one root. To check the uniqueness, we note that
\[
\frac{d(\tan z)}{dz} = \sec^2 z \geq 1 = \frac{d(z)}{dz}.
\]
Therefore, we see that the derivative of the left-hand side is always larger than the derivative of the right-hand side. Thus, the left-hand side will always be larger than the right in each region for \(z \) greater than the point of intersection, and hence there will be exactly one such point.

(b) Find an asymptotic expansion for \(z_n \) as \(n \to \infty \). Include terms up to \(O(n^{-2}) \).

Solution. From the right-hand side, we see that \(z_n \to \infty \), so we are looking for large values of \(\tan z \), which occurs as \(z \to (n + 1/2)\pi^- \). Therefore, we see that as \(n \to \infty \), \(z_n \sim (n + 1/2)\pi - z_* \), where \(z_* \to 0^+ \) as \(n \to \infty \). Substituting in this form, we have
\[
\sin((n + 1/2)\pi - z_*) = (n + 1/2)\pi - z_* \\
(-1)^n \cos z_* = [(n + 1/2)\pi - z_*][(-1)^n \sin z_*] \\
\cos z_* = [(n + 1/2)\pi - z_*] \sin z_*.
\]
Now we let
\[
z_* = \frac{z_1}{n} + \frac{z_2}{n^2} + o(n^{-2}), \quad n \to \infty,
\]
to obtain, to leading orders,
\[
\cos \left(\frac{z_1}{n} + \frac{z_2}{n^2} \right) = \left[\left(n + \frac{1}{2} \right) \pi - \left(\frac{z_1}{n} + \frac{z_2}{n^2} \right) \right] \sin \left(\frac{z_1}{n} + \frac{z_2}{n^2} \right) \\
1 - \frac{1}{2} \left(\frac{z_1}{n} \right)^2 = \left[\left(n + \frac{1}{2} \right) \pi \right] \left(\frac{z_1}{n} + \frac{z_2}{n^2} \right) \\
\frac{1}{\pi} = z_1 + \frac{z_2 + z_1/2}{n} \\
z_1 = \frac{1}{\pi}, \quad z_2 = -\frac{1}{2\pi} \\
z_n \sim n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2n^2\pi}.
\]