Homework Set 4 Solutions

1. Since the optimal bundle x^* depends on the price vector $p \geq 0$ and the budget I, we have that the optimal utility $U^* = U(x^*)$ can also be written as a function of p and I: $U^*(p, I)$, where U^* is called the indirect utility function.

(a) (5 points) Show that the indirect utility function is a decreasing function of all prices and an increasing function of income. As an intermediate step, you should show that

$$\frac{\partial x^*_j}{\partial p_j} = -\frac{x^*_j}{p_j}, \quad \frac{\partial x^*_j}{\partial p_i} = -\frac{x^*_i}{p_j}, \quad (4.1)$$

where the x^*_j and p_j are components of the optimal bundle and price vector, respectively.

Solution. We know from Homework Set 3, #5 that x^* must lie on the budget line, so we have

$$p^T x^* - I = 0$$
$$\sum_{j=1}^n p_j x^*_j - I = 0$$

$$x^*_j = \frac{1}{p_j} \left(I - \sum_{i \neq j} p_i x^*_i \right). \quad (A)$$

Therefore, we have that

$$\frac{\partial x^*_j}{\partial p_j} = -\frac{1}{p_j^2} \left(I - \sum_{i \neq j} p_i x^*_i \right) = -\frac{x^*_j p_j}{p^2_j} = -\frac{x^*_j}{p_j}$$
$$\frac{\partial x^*_j}{\partial p_i} = \frac{x^*_i}{p_j},$$

which is exactly (4.1). Calculating our derivatives, we have

$$\frac{\partial U^*}{\partial p_i} = \nabla U^* \cdot \frac{\partial x^*}{\partial p_i}, \quad \frac{\partial U^*}{\partial I} = \nabla U^* \cdot \frac{\partial x^*}{\partial I}. \quad (B)$$

We know that $\nabla U^* > 0$, and since x_j and p_j are both positive, we have from (4.1) that $\frac{\partial x^*}{\partial p_i} < 0$, so their dot product is less than zero. Hence U^* is a decreasing function of price. Similarly, from (A) we have that

$$\frac{\partial x^*_j}{\partial I} = \frac{1}{p_j} > 0 \quad (C)$$
for all j, so $\partial U^*/\partial I > 0$, and U is an increasing function of income.

(b) (3 points) Show that

$$x_j^* = -\frac{\partial U^*/\partial p_j}{\partial U^*/\partial I}.$$

Solution. Combining (4.1) and (C), we have

$$\frac{\partial x_j^*}{\partial p_i} = -\frac{x_i^*}{p_j} = -x_i^* \frac{\partial x_j^*}{\partial I} \implies \frac{\partial x^*}{\partial p_i} = -x_i^* \frac{\partial x^*}{\partial I}.$$

Substituting this result into (B), we have

$$\frac{\partial U^*}{\partial p_i} = \nabla U^* \cdot \left(-x_i^* \frac{\partial x^*}{\partial I}\right) = -x_i^* \frac{\partial U^*}{\partial I}.$$

Replacing i by j and rearranging, we have the desired result.

2. (6 points per part) For the following relations on the listed spaces, determine the conditions (if any) on the listed characteristic that:

- make the relation a preference relation,
- make the preference relation complete,
- make the complete preference relation strongly monotone.

In the case of a complete strongly monotone preference relation, write a corresponding utility function. (You may assume that any preference relation which satisfies all the other properties is continuous.)

(a) characteristic: set $X \subseteq \mathcal{R}^n$, $x \succeq y$ if and only if $\min_i x_i \geq \max_i y_i$.

Solution. For general X, this is not a preference relation, for it is not symmetric. In particular,

$$x \succeq x \implies \min_i x_i \geq \max_i x_i,$$

which occurs only if $\min_i x_i = \max_i x_i$, which implies that all the x_i are the same. Hence this is only a preference relation if $X = \{x \in \mathcal{R}^n | x = t\mathbf{1}, t \in \mathcal{R}\}$. On this set, we may redefine the relation as

$$x \succeq y \text{ if and only if } t_x \geq t_y,$$

where $x = t_x \mathbf{1}$ and similarly for the other variables. Hence it is transitive, since

$$x \succeq y, \quad y \succeq z \implies t_x \geq t_y, \quad t_y \geq t_z \implies t_x \geq t_z \implies x \succeq z.$$

Thus it is a preference relation, and it is complete because either $t_x \geq t_y$ or $t_y \geq t_x$ for all x, y, so either $x \succeq y$ or $y \succeq x$. It is also strongly monotone, since

$$x_j \succeq y_j, \quad x \neq y \implies t_x > t_y \implies x \succ y.$$
A corresponding utility function is \(U(x) = t_x \).

(b) characteristic: vector \(z \)

\(X = \{ x \in \mathbb{R}^n | x \geq 0 \}, \ x \succeq y \) if and only if the distance between \(x \) and \(z \) is greater than or equal to the distance between \(y \) and \(z \), for some fixed \(z \in \mathbb{R}^n \).

Solution. Though we could consider the actual distance, for simplicity we consider \(U(x) = |x - z|^2 \) instead, which we may do WLOG. The relation is a preference relation for any \(z \), since \(U(x) \geq U(y) \), so we have reflexivity. Moreover,

\[x \succeq y, \ y \succeq z \implies U(x) \geq U(y), \ U(y) \geq U(z), \]

which implies that

\[U(x) \geq U(z) \implies x \succeq z, \]

so the relation is transitive. It is complete for any \(z \) since we can compute (and hence compare) \(U(x) \) for any \(x \). For strong monotonicity, we must have

\[x_j \geq y_j, \ x \neq y \implies x \succ y \implies U(x) > U(y). \]

If this is true for all \(x \) and \(y \), it must be true for \(x = y + \delta u \), where \(\delta > 0 \) and \(u \geq 0 \) is a unit vector. But

\[
U(y + \delta u) = \sum_{j=1}^{n} (y_j + \delta u_j - z_j)^2 = \sum_{j=1}^{n} (y_j - z_j)^2 + 2\delta u_j (y_j - z_j) + \delta^2 u_j^2 \\
= U(y) + \delta^2 + 2\delta \sum_{j=1}^{n} u_j (y_j - z_j).
\]

Taking the limit as \(\delta \to 0^+ \), we see that \(y_j - z_j \geq 0 \) for all \(j \) to guarantee that \(U(x) > U(y) \). Since \(y \in X \) is arbitrary, we see that \(y_j \) can be as small as zero, which means that \(z_j \leq 0 \) for all \(j \). So \(-z \in X \) for the preference relation to be strongly monotone, in which case \(U \) is the utility function.

(c) characteristic: set \(X \)

\[X \subseteq \mathbb{R}^n, \ n \text{ odd}; \ x \succeq y \text{ if and only if } \prod_{i=1}^{n} x_i \geq \prod_{i=1}^{n} y_i. \]

Solution. Let

\[U(x) = \prod_{i=1}^{n} x_i. \]

The relation is a preference relation for any \(X \), since \(U(x) \geq U(x) \), so we have reflexivity. Moreover,

\[x \succeq y, \ y \succeq z \implies U(x) \geq U(y), \ U(y) \geq U(z), \]

which implies that

\[U(x) \geq U(z) \implies x \succeq z, \]
so the relation is transitive. It is complete for any \(z \) since we can compute (and hence compare) \(U(x) \) for any \(x \). For strong monotonicity, we must have

\[
x_i \geq y_i, \quad x \neq y \implies x \succ y \implies U(x) > U(y).
\]

If this is true for all \(x \) and \(y \), it must be true for \(x = y + \delta u \), where \(\delta > 0 \) and \(u \geq 0 \) is a unit vector. But

\[
U(y + \delta u) = \prod_{i=1}^{n}(y_i + \delta u_j) = \prod_{i=1}^{n} y_i + \delta \sum_{j=1}^{n} u_j \prod_{i \neq j} y_i + O(\delta^2).
\]

Taking the limit as \(\delta \to 0^+ \), we see that the product of \(n - 1 \) terms must be non-negative for all \(j \) to guarantee that \(U(x) \geq U(y) \). Since \(n \) is odd, that means that either all the \(y_i \geq 0 \), or all the \(y_i \leq 0 \). So \(y \geq 0 \) or \(y \leq 0 \). Now suppose that \(y_i = 0 \), \(u = e_k \), \(k \neq i \). But then \(u_i = 0 \), so \(x_i = 0 \), and \(U(x) = U(y) \), \(x \neq y \). So to guarantee strong monotonicity, \(y_i \neq 0 \) for any \(i \). Hence \(X = \{ x \in \mathbb{R}^n | x > 0 \text{ or } x < 0 \} \).

3. Let \(f(x) \in C^\infty[a, b] \) (i.e., \(f(x) \) has infinitely many continuous derivatives in \([a, b] \)). Moreover, let \(f(x) \) be strictly concave.

(a) (6 points) Show that wherever \(f''(x) \neq 0 \) for some \(x \in [a, b] \), \(f''(x) < 0 \).

Solution. The proof proceeds similarly to Homework Set 1, #2. If \(f \) is strictly concave, then for any \(x \in [a, b] \),

\[
(1 - \lambda)f(x_1) + \lambda f(x_2) < f((1 - \lambda)x_1 + \lambda x_2), \quad 0 < \lambda < 1.
\]

Letting \(h = x_2 - x_1 \), we have

\[
(1 - \lambda)f(x_1) + \lambda f(x_1 + h) < f((1 - \lambda)x_1 + \lambda(x_1 + h)) = f(x_1 + \lambda h).
\]

Since \(f(x) \in C^\infty[a, b] \), we may expand in a Taylor series about \(x_1 \):

\[
f(x_1 + h) = f(x_1) + hf'(x_1) + \frac{h^2}{2} f''(\xi), \quad \xi \in [x_1, x_1 + h] = [x_1, x_2],
\]

\[
f(x_1 + \lambda h) = f(x_1) + (\lambda h)f'(x_1) + \frac{(\lambda h)^2}{2} f''(\eta), \quad \eta \in [x_1, x_1 + \lambda h],
\]

where we have assumed that \(f''(x) \neq 0 \) everywhere in \([x_1, x_2] \). Substituting the above into (E) and simplifying, we obtain

\[
(1 - \lambda)f(x_1) + \lambda \left[f(x_1) + hf'(x_1) + \frac{h^2}{2} f''(\xi) \right] < f(x_1) + \lambda hf'(x_1) + \frac{(\lambda h)^2}{2} f''(\eta)
\]

\[
f(x_1) + h\lambda f'(x_1) + \frac{h^2}{2} \lambda f''(\xi) < f(x_1) + \lambda hf'(x_1) + \frac{(\lambda h)^2}{2} f''(\eta)
\]

\[
\lambda \frac{h^2}{2} f''(\xi) < \frac{(\lambda h)^2}{2} f''(\eta)
\]

\[
f''(\xi) < \lambda f''(\eta),
\]
where we have used the fact that \(\lambda \neq 0 \). But this must be true for \(x_2 \to x_1 \), which implies that \(\eta \) and \(\xi \) both tend to \(x_1 \). Hence we have

\[
(1 - \lambda)f''(x_1) < 0.
\]

Since \(0 < \lambda < 1 \), we have that the coefficient of \(f'' \) is positive, so \(f''(x_1) < 0 \). But this must be true for \(x_2 \to x_1 \), which implies that \(\eta \) and \(\xi \) both tend to \(x_1 \). Hence we have

\[
(1 - \lambda)f''(x_1) < 0.
\]

(b) (3 points) Show that \(f''(x) = 0 \) only at isolated points in \([a, b] \).

Solution. Suppose that \(f''(x) = 0 \) for \(x \in [x_1, x_2] \). Then \(f^{(n)}(x) = 0 \) for all \(x \in [x_1, x_2] \) as well, so

\[
f(x) = c_1 + c_2 x, \quad x \in [x_1, x_2],
\]

for some constants \(c_1 \) and \(c_2 \). But then

\[
(1 - \lambda)f(x_1) + \lambda f(x_2) = (1 - \lambda)(c_1 + c_2 x_1) + \lambda(c_1 + c_2 x_2) \\
= c_1 + c_2[(1 - \lambda)x_1 + \lambda x_2] \\
= f((1 - \lambda)x_1 + \lambda x_2),
\]

which contradicts the definition in (D).

4. (5 points) Prove Theorem CF1 in the other direction. In particular, let \(X \subseteq \mathbb{R}^n \), \(f : X \to \mathbb{R} \). Moreover, assume that for any \(x_i \in X \),

\[
\sum_{i=1}^{n} \lambda_i f(x_i) \leq f \left(\sum_{i=1}^{n} \lambda_i x_i \right), \quad \lambda_i \in [0, 1], \quad \sum_{i=1}^{n} \lambda_i = 1. \tag{4.2}
\]

Prove that \(\text{hyp } f \) is convex.

Solution. Suppose that we have two points \((y_i, x_i) \in \text{hyp } f \), so \(y_i \leq f(x_i) \). To prove that \(\text{hyp } f \) is convex, we must prove that

\[
(y, x) = (1 - \lambda)(y_1, x_1) + \lambda(y_2, x_2) \in \text{hyp } f,
\]

which is equivalent to showing that \(y \leq f(x) \). Since \(y_j \leq f(x_j) \), we have

\[
y = (1 - \lambda)y_1 + \lambda y_2 \leq (1 - \lambda)f(x_1) + \lambda f(x_2).
\]

Without loss of generality, take \(\lambda_i = 0 \) for \(i > 2 \) in (4.2). Then we may rewrite (4.2) as

\[
(1 - \lambda)f(x_1) + \lambda f(x_2) \leq f(x), \quad x \equiv (1 - \lambda)x_1 + \lambda x_2.
\]

Putting the above two expressions together, we have \(y \leq f(x) \), as required. So the convex combination of any two points in \(\text{hyp } f \) is in \(\text{hyp } f \), so \(\text{hyp } f \) is convex.