Homework Set 1

Read chapter 2, the intro to chapter 5, and section A-5.

WARNING: A picture is not a proof. A picture *illustrates* a proof.

Convex Sets

1. For each of the following sets $S \in \mathbb{R}^2$, do each of the following, illustrating subcases as necessary:
 - sketch S in distinguished cases corresponding to different regions of α,
 - algebraically determine the conditions on α (if any) under which S is closed,
 - algebraically determine the conditions on α (if any) under which S is convex, and
 - in any case where S is not convex, draw a line segment of convex combinations not contained in S.

 The proof of closure does not need to be as rigorous as the proof of convexity.

 (a) (5 points) $S = \{ x \geq 0, y \geq 0, xy > \alpha, \alpha \in \mathbb{R} \}$
 (b) (9 points) $S = \{ y \geq 0, x^2 + y^2 < 1 \}$
 (c) (5 points) $S = \{ y \geq 1 + \alpha |x|, \alpha \in \mathbb{R} \}$

2. (13 points) Consider the following region X:

 $$ X = \{(x,y) | x \geq 0, 0 \leq y \leq f(x)\}, \quad f(x) \in C^2[0, b], \quad f(0) > 0, $$

 where b is the smallest positive zero of f. (Here $C^2[0, b]$ is the set of functions with continuous second derivatives on $[0, b]$.) Determine conditions on $f(x)$ such that X is convex.

3. (4 points) Let $H = \{ x \in \mathbb{R}^n | u^T x = c \}$ for some given $u \in \mathbb{R}^n$, $c \in \mathbb{R}$. (Such a set is called a *hyperplane* in \mathbb{R}^n.) Show that H has no interior points.

4. (4 points) Either prove the following statement, or provide a general example which disproves it. Again, just a diagram is not enough.

 Let S_1 and S_2 be convex sets that intersect at infinitely many points with $\text{int } S_1 \neq \phi$, $\text{int } S_2 \neq \phi$. Then $\text{int} (S_1 \cap S_2) \neq \phi$.