Homework Set 8 (Revised)

Read sections P4.1, P4.3, and P6.3.

Section P6.3

1. Consider the two ordered bases $B = [2, 3 + x, 1 - x^2]$ and $C = [1, 2 - x, x^2 + x + 2]$ for P_2.
 (a) Find the transition matrix $C \leftarrow B$.
 (b) Calculate $b = [x^2 - 1]_B$ and $c = [x^2 - 1]_C$.
 (c) Verify that $c = C \leftarrow B b$.

2. Consider the matrix and vectors $B = \begin{pmatrix} 14 & 15 \\ -10 & -11 \end{pmatrix}$, $u_1 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $u_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
 (a) Verify that $B u_1 = 4 u_1$ and $B u_2 = -u_2$.
 (b) Find the transition matrix $T = U \leftarrow E$ corresponding to the change of basis from the standard basis $E = [e_1, e_2]$ to the basis $U = [u_1, u_2]$.
 (c) Show that the U-coordinates of $(3, -1)^T$ are $(2, 3)^T$.
 (d) Calculate $T B T^{-1}$.

Section P4.1

3. Determine which of the vectors $k_1 = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}$, $k_2 = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$, $k_3 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$ are eigenvectors for $A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{pmatrix}$.
 For any eigenvectors, find the corresponding eigenvalue.

4. Let A be an $n \times n$ matrix and let $B = A - \alpha I$. If $A z = \lambda z$, show that z is also an eigenvector for B. What is its eigenvalue with respect to B?
5. Consider the matrix

\[A = \begin{pmatrix} 5 & 0 \\ 2 & 1 \end{pmatrix}. \]

(a) Find an eigenvector for \(A \) corresponding to \(\lambda = 1 \).
(b) Find an eigenvector for \(A \) corresponding to \(\lambda = 5 \).

Section P4.3

6. Let \(A \) be a matrix whose rows all add up to the same constant \(\delta \). Show that \(\delta \) is an eigenvalue of \(A \).

7. Find the eigenvalues and corresponding eigenspaces for the following matrices:

\[A_1 = \begin{pmatrix} 6 & 1 \\ -4 & 6 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}. \]

8. Consider the following matrix:

\[C = \begin{pmatrix} -2 & 2 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix}. \]

(Matrices of this form occur regularly in physical problems. For instance, this matrix could represent the diffusion of heat in a one-dimensional bar.) Find the eigenvalues and a basis for each of the corresponding eigenspaces.

9. (BH) Consider the following matrix:

\[F = \begin{pmatrix} 1 & 3 & -2 \\ -2 & 0 & 4 \\ 3 & 5 & -6 \end{pmatrix}. \]

We wish to calculate the eigenvalues of this matrix without using the characteristic polynomial.

(a) Use facts about determinants to explain why \(\lambda_1 = 0 \).
(b) Use your answer to #6 to obtain \(\lambda_2 \).
(c) Use facts about the trace to determine the third eigenvalue.
10. The *Cayley-Hamilton theorem* states that every matrix $A \in \mathbb{R}^{n \times n}$ is a root of its characteristic polynomial. So if

$$p_A(\lambda) = a_0 + \sum_{j=1}^{n} a_j \lambda^j$$

is the characteristic polynomial of A, then

$$p_A(A) = a_0 I + \sum_{j=1}^{n} a_j A^j = O.$$

Verify the Cayley-Hamilton Theorem for the matrix

$$A = \begin{pmatrix} 3 & 2 \\ 7 & 4 \end{pmatrix}. \quad (8.1)$$