Homework Set 2

Read sections Z1.1, Z1.2, Z2.2, Z3.1.

Sections Z1.2, Z2.2

1. Write the general solution of the equation

\[\dot{y} = \frac{e^{-t}}{y^2}. \]

2. Consider the equation

\[\ddot{w} = kt^\alpha \cos^2 w, \quad w(1) = 0, \quad w(1) = 0, \]

where \(k > 0 \) and \(\alpha \) are constants.

(a) Find the solution of (2.1). Be sure to examine the special case when \(\alpha = -1 \).

(b) Discuss the behavior of the solutions to (2.1) as \(t \to \infty \). Remark on the solution for all \(\alpha \).

3. WITHOUT solving the problem, determine the interval in \(t \) in which the solution of

\[(t + 2) \dot{y} + y\sqrt{2t + 7} = 3t^2, \quad y(0) = -1 \]

is guaranteed to exist. Is the interval the same if the boundary condition is changed to

\[y(-3) = 2? \]

4. Consider the equation

\[\dot{y} - ty^3 = 0, \quad y(0) = y_0 > 0. \]

(a) Write down the solution to the equation.

(b) How does the interval of existence for the solution depend on \(y_0 \)?
Section Z3.1

5. Consider the differential equation

\[3\ddot{y} + 13\dot{y} + 4y = 0. \]

(a) Find the general solution. Describe the long-time behavior.
(b) Calculate the specific solution for \(y(0) = 4, \dot{y}(0) = -5 \).

6. Write down all equations of the form \(a\ddot{y} + b\dot{y} + cy = 0 \) such that the solution \(y \) approaches a multiple of \(e^{-t} \) as \(t \to \infty \).

7. Consider the following system of coupled first-order ODEs:

\begin{align*}
3\dot{x} + x + 2\dot{y} + 5y &= 0, \quad (2.2a) \\
-2x + \dot{y} + 4y &= 0. \quad (2.2b)
\end{align*}

(a) Eliminate \(x \) from the system to obtain a second-order ODE for \(y \).
(b) Show that the general solution for \(y \) is

\[y(t) = c_1 e^{-14t/3} + c_2 e^{-t}, \]

and find the corresponding general solution for \(x \).

8. For the equation

\[2\ddot{y} + 5\dot{y} - 3y = 0, \]

find the fundamental set \(\{y_1(t), y_2(t)\} \) where

\[y_1(0) = 1, \quad \dot{y}_1(0) = 0; \quad y_2(0) = 0, \quad \dot{y}_2(0) = 1. \]

9. Consider the equation

\[(t^2 - 1)\ddot{y} + t\dot{y} + \frac{3y}{\cos t} = 0. \]

Find all intervals where this equation is guaranteed to have a unique solution.
(Consider \(t \) to be of either sign.)

10. Consider the ODE

\[y^{(3)} - 13\dot{y} - 12y = 0. \quad (2.3) \]

(a) Show by direct substitution that three solutions of (2.3) are given by \(\{e^{-t}, e^{-3t}, e^{4t}\} \).
(b) Show that the Wronskian of these three solutions is constant.