1. Let $A \in \mathbb{C}^{m \times m}$, $b \in \mathbb{C}^m$, and k be a positive integer. To solve the linear system $A^k x = b$, you could form the matrix $C = A^k$ and then use pivoted LU factorization on C. Describe another algorithm starting with pivoted LU factorization on A. (You may express your algorithm as MATLAB code, but do not have to.) Which of these two methods is faster?

$$A = P^T L U \quad \leftrightarrow \quad A^{-1} = U^{-1} L^{-1} P$$

1. Factor.
2. $x = b$
3. for $j = 1, \ldots, k$

 $x = P x$

 Solve $L y = x$ for y

 Solve $U x = y$ for x

end

$k-1$ matrix multiplications to get $A^k \approx (k-1)(2m^3)$ flops

$$= O(km^3) \text{ flops}$$

This is the slower method.
2. (a) Prove that if X is a hermitian positive definite $m \times m$ matrix such that $X^2 = I$, then $X = I$. (Hint: Use an SVD.)

(b) Prove that if A is any real SPD matrix, then there is another real SPD matrix X such that $X^2 = A$. (Hint: Use an SVD.)

(a) Write $X = U \Sigma U^*$ as SVD. Then

$$I = X^*X = U \Sigma U^* U \Sigma U^* = U \Sigma^2 U^*$$

This is an SVD of I, so $\Sigma^2 = I$. Since X is pos. def., $\Sigma = I$

(b) Let $A = R^T R$ be a Cholesky factorization. Write an SVD, $R = U \Sigma V^*$. Then $A = V \Sigma U^* U \Sigma V^* = V \Sigma^2 V^*$

$$= V \Sigma V^* V \Sigma V^* = X^2$$

if $X = V \Sigma V^*$. This is an eigenvalue decomposition, showing that X is positive def.
3. Suppose A is a real symmetric matrix with eigenvalues -4, -1, 2, 12. In each column below are eigenvalue estimates that result from running one of these four iterations on A: power iteration, inverse iteration, shifted inverse iteration, or Rayleigh quotient iteration. In each case state which iteration was used, explaining quantitatively why your answer is the most reasonable one.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.310261519629201</td>
<td>11.99335415439482</td>
<td>-2.411923455369100</td>
<td></td>
</tr>
<tr>
<td>10.586563234632390</td>
<td>11.999262069508562</td>
<td>-3.996594223136526</td>
<td></td>
</tr>
<tr>
<td>11.958782543542418</td>
<td>11.999918025646743</td>
<td>-3.999996465301037</td>
<td></td>
</tr>
<tr>
<td>11.99999316281780</td>
<td>11.99990892287636</td>
<td>-3.9999996325349</td>
<td></td>
</tr>
<tr>
<td>12.00000000000000</td>
<td>11.99998888047848</td>
<td>-3.999999999996177</td>
<td></td>
</tr>
</tbody>
</table>

(a) errors are about 3.7, 1.4, 0.041, 7×10^{-8}, $< 10^{-16}$.
This is clearly superlinear, and consistent with cubic convergence: **R.Q.I.**

(b) errors are 6.6×10^{-3}, 7.4×10^{-4}, 8.1×10^{-5}, 9.1×10^{-6}, etc.
They decrease by a factor of about 9 at each step, which is equal to $\left| \frac{\lambda_2}{\lambda_1} \right|^2 = \left| \frac{12}{-4} \right|^2 = 3^2$. **Power iter.**

(c) Converge to an eigenvalue other than largest or smallest in magnitude. Error decreases by a factor of about 1000 at each step, which is linear convergence. **Shifted inverse iter.**
4. Let $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$.

(a) Use symmetric pivoting to find a symmetric tridiagonal T that is unitarily similar to A.
(The standard Hessenberg reduction method is not necessary.)

(b) Describe what happens when the “pure” (unshifted) QR iteration is applied to A. Explain this convergence behavior in terms of eigenvalues.

\((a)\) Swap rows 2 and 3, then columns 2 and 3.

\[
PAP^T = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} P^T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = T
\]

\((b)\) A is orthogonal, so $A=A^T$ is the QR factorization, and $I=A=A$ again. No change! (Same for T.)

Eigenvalues are \{1, 1, -1, -1\}; all have magnitude 1, so no progress for power iteration.