Please start each problem on a new page. Remember to justify your answers to receive full credit.

1. Suppose Q is a $2m \times 2m$ unitary matrix. Let \hat{Q} be the $2m \times m$ matrix consisting of the first m columns of Q.
 (a) Write out a full (not reduced) SVD of \hat{Q}, in terms of Q and any other matrices you wish to define.
 (b) What is $\kappa_2(\hat{Q})$?

2. Suppose $A \in \mathbb{C}^{m \times n}$ has full rank, and A is diagonal:
 \[
 A = \begin{bmatrix}
 a_{11} & & & \\
 & a_{22} & & \\
 & & \ddots & \\
 0 & \cdots & & a_{nn} \\
 \vdots & & & \vdots \\
 0 & \cdots & & 0
 \end{bmatrix}
 \]
 (a) Find A^+, the pseudoinverse of A.
 (b) Find $|A^+A - I|_F$ and $|AA^+ - I|_F$, for appropriately sized identity matrices.

3. Let D be a diagonal $m \times m$ matrix with positive numbers on the diagonal. Then we can define a norm for all vectors $u \in \mathbb{C}^m$ by $|u|_D = (u^* Du)^{1/2}$.
 (a) Show that $|u|_D = |v|_2$ for an appropriately defined v.
 (b) Suppose also that $b \in \mathbb{C}^m$, $A \in \mathbb{C}^{m \times n}$, $m \geq n$, and A has full rank. Find an x that minimizes $|Ax - b|_D$.

4. Find the 1-norm condition number for the problem of computing e^{x+y} given the scalar values x and y.

5. Consider the problem of finding the square root of a positive number. Suppose a computer returns exactly fl($\sqrt{\text{fl}(x)}$) in every case. Is this algorithm backward stable?

![Image](From xkcd.com)