> restart;
 

 

Logarithms 

The natural logarithm is defined as the ln command. 

> Int( 1/t, t=1..x );
 

Int(1/t, t = 1 .. x) 

> value(%) assuming x>0;
 

ln(x) 

> diff( ln(x), x );
 

1/x 

> plot( ln(x), x=0..5 );
 

Plot 

General logarithms can be found with log, giving the base of the log in a special way. 

> log[10](x);
 

ln(x)/ln(10) 

> plot( [ log[2](x), ln(x), log[4](x) ], x=0..5, color=[red,green,blue] );
 

Plot 

 

Exponentials 

General exponentials are written using the caret ^ for exponential notation. 

> 2^x;
 

2^x 

> diff( 10^x, x );
 

10^x*ln(10) 

For the natural (base-e) exponential, however, it's better to use the function exp instead. In fact, the number e is not defined. 

> exp(x);
 

exp(x) 

> e^x;
 

e^x 

If you look carefully, you will see that the two previous results are a little different (the font of the e). 

> diff( exp(x), x );
 

exp(x) 

> diff( e^x, x );
 

e^x*ln(e) 

You are free to define e and then use the caret form, but it's easy to forget the defintion step and get confusing results. 

> e:= exp(1);
 

exp(1) 

> diff( e^x, x );
 

(exp(1))^x 

 

Inverse trig functions 

We do not use the "-1" notation for inverse functions in Maple. The inverse trig functions all have names beginning with arc. 

> arccos(0);
 

1/2*Pi 

> diff( arctan(x), x );
 

1/(1+x^2) 

> csc( arctan(x) );
 

(1+x^2)^(1/2)/x 

 

Hyperbolic functions 

All the hyperbolic functions are defined as you would expect. 

> int( sinh(x), x);
 

cosh(x) 

> limit( tanh(x), x=infinity );
 

1 

> plot( [cosh(x),sinh(x),tanh(x)], x=-2..2, color=[red,black,blue] );
 

Plot