MATH 829: Introduction to Data Mining and Analysis
Computing the lasso solution

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

February 26, 2016
Lasso if often used in high-dimensional problems.
Lasso is often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
Computing the lasso solution

- Lasso is often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?
Computing the lasso solution

- Lasso if often used in high-dimensional problems.
- Cross-validation involves solving many lasso problems. (Note: the solutions can be computed in parallel with a computer cluster when working with large problems.)
- How can we efficiently compute the lasso solution?
- Recall: the lasso objective

\[\| y - X\beta \|_2^2 + \alpha \| \beta \|_1 \]

is NOT differentiable everywhere on \(\mathbb{R}^p \).
Lasso if often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note: the solutions can be computed *in parallel* with a computer cluster when working with large problems.)

How can we *efficiently* compute the lasso solution?

Recall: the lasso objective

\[\|y - X\beta\|_2^2 + \alpha\|\beta\|_1 \]

is NOT differentiable everywhere on \(\mathbb{R}^p \).

Many strategies exist for solving minimizing the lasso objective function,
Lasso is often used in high-dimensional problems.

Cross-validation involves solving many lasso problems. (Note: the solutions can be computed *in parallel* with a computer cluster when working with large problems.)

How can we *efficiently* compute the lasso solution?

Recall: the lasso objective

\[
\| y - X\beta \|_2^2 + \alpha \| \beta \|_1
\]

is NOT differentiable everywhere on \mathbb{R}^p.

Many strategies exist for solving minimizing the lasso objective function,

We will look at two approaches: coordinate descent, and least-angle regression (LARS).
Objective: Minimize a function $f : \mathbb{R}^n \to \mathbb{R}$.

Neglected technique in the past that gained popularity recently. Can be very efficient when the coordinate-wise problems are easy to solve (e.g. if they admit a closed-form solution).
Objective: Minimize a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$.
Strategy: Minimize each coordinate separately while cycling through the coordinates.
Coordinate descent optimization

Objective: Minimize a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$.

Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$x_1^{(k+1)} = \arg\min_x f(x, x_2^{(k)}, x_3^{(k)}, \ldots, x_p^{(k)})$$

$$x_2^{(k+1)} = \arg\min_x f(x_1^{(k+1)}, x, x_3^{(k)}, \ldots, x_p^{(k)})$$

$$x_3^{(k+1)} = \arg\min_x f(x_1^{(k+1)}, x_2^{(k+1)}, x, x_4^{(k)}, \ldots, x_p^{(k)})$$

$$\vdots$$

$$x_p^{(k+1)} = \arg\min_x f(x_1^{(k+1)}, x_2^{(k+1)}, \ldots, x_{p-1}^{(k+1)}, x).$$
Objective: Minimize a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \).

Strategy: Minimize each coordinate separately while cycling through the coordinates.

\[
\begin{align*}
x_1^{(k+1)} &= \arg\min_x f(x, x_2^{(k)}, x_3^{(k)}, \ldots, x_p^{(k)}) \\
x_2^{(k+1)} &= \arg\min_x f(x_1^{(k+1)}, x, x_3^{(k)}, \ldots, x_p^{(k)}) \\
x_3^{(k+1)} &= \arg\min_x f(x_1^{(k+1)}, x_2^{(k+1)}, x, x_4^{(k)}, \ldots, x_p^{(k)}) \\
&\vdots \\
x_p^{(k+1)} &= \arg\min_x f(x_1^{(k+1)}, x_2^{(k+1)}, \ldots, x_{p-1}^{(k+1)}, x).
\end{align*}
\]

Neglected technique in the past that gained popularity recently.
Coordinate descent optimization

Objective: Minimize a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$.

Strategy: Minimize each coordinate separately while cycling through the coordinates.

$$x_1^{(k+1)} = \arg\min_x f(x, x_2^{(k)}, x_3^{(k)}, \ldots, x_p^{(k)})$$

$$x_2^{(k+1)} = \arg\min_x f(x_1^{(k+1)}, x, x_3^{(k)}, \ldots, x_p^{(k)})$$

$$x_3^{(k+1)} = \arg\min_x f(x_1^{(k+1)}, x_2^{(k+1)}, x, x_4^{(k)}, \ldots, x_p^{(k)})$$

$$\vdots$$

$$x_p^{(k+1)} = \arg\min_x f(x_1^{(k+1)}, x_2^{(k+1)}, \ldots, x_{p-1}^{(k+1)}, x).$$

Neglected technique in the past that gained popularity recently.
Can be very efficient when the coordinate-wise problems are easy to solve (e.g. if they admit a closed-form solution).
Coordinate descent optimization

\[f(x, y) = 5x^2 - 6xy + 5y^2 \]

Does this procedure always converge to an extreme point of the objective in general? NO!

\[f(x, y) = |x + y| + 3|y - x| \]
Does coordinate descent work for the lasso? YES! We exploit the fact that the non-differentiable part of the objective is *separable*.
Does coordinate descent work for the lasso? YES! We exploit the fact that the non-differentiable part of the objective is separable.

Theorem: (See Tseng, 2001). Suppose

\[
f(x_1, \ldots, x_p) = f_0(x_1, \ldots, x_p) + \sum_{i=1}^{p} f_i(x_i) \quad (f \in \mathbb{R}^p)
\]

satisfies

1. \(f_0 : \mathbb{R}^p \rightarrow \mathbb{R} \) is convex and continuously differentiable.
2. \(f_i : \mathbb{R} \rightarrow \mathbb{R} \) is convex \((i = 1, \ldots, p) \).
3. The set \(X^0 := \{ x \in \mathbb{R}^p : f(x) \leq f(x^0) \} \) is compact.
4. \(f \) is continuous on \(X^0 \).

Then every limit point of the sequence \((x^{(k)})_{k \geq 1} \) generated by cyclic coordinate descent converges to a global minimum of \(f \).
Lasso: individual step

Fix x_j for $j \neq i$. We need to solve:

$$\min_{x_i} \frac{1}{2} \|y - Ax\|_2^2 + \alpha \sum_{k=1}^{p} |x_k|$$

$$= \min_{x_i} \frac{1}{2} \sum_{l=1}^{n} \left(y_l - \sum_{m=1}^{p} a_{lm} x_m \right)^2 + \alpha \sum_{k=1}^{p} |x_k|.$$
Lasso: individual step

Fix x_j for $j \neq i$. We need to solve:

$$
\min_{x_i} \frac{1}{2} \|y - Ax\|_2^2 + \alpha \sum_{k=1}^{p} |x_k|
$$

Now,

$$
\frac{\partial}{\partial x_i} \frac{1}{2} \sum_{l=1}^{n} \left(y_l - \sum_{m=1}^{p} a_{lm} x_m \right)^2 = \sum_{l=1}^{n} \left(y_l - \sum_{m=1}^{p} a_{lm} x_m \right) \times (-a_{li})
$$

$$
= A_i^T(Ax - y)
$$

$$
= A_i^T(A_{-i}x_{-i} - y) + A_i^T A_i x_i.
$$
Lasso: individual step

Fix x_j for $j \neq i$. We need to solve:

$$\min_{x_i} \frac{1}{2} \| y - Ax \|_2^2 + \alpha \sum_{k=1}^{p} |x_k|$$

$$= \min_{x_i} \frac{1}{2} \sum_{l=1}^{n} \left(y_l - \sum_{m=1}^{p} a_{lm} x_m \right)^2 + \alpha \sum_{k=1}^{p} |x_k|.$$

Now,

$$\frac{\partial}{\partial x_i} \frac{1}{2} \sum_{l=1}^{n} \left(y_l - \sum_{m=1}^{p} a_{lm} x_m \right)^2 = \sum_{l=1}^{n} \left(y_l - \sum_{m=1}^{p} a_{lm} x_m \right) \times (-a_{li})$$

$$= A_i^T (Ax - y)$$

$$= A_i^T (A_{-i}x_{-i} - y) + A_i^T A_i x_i.$$

What about the non-differential part?
Digression: subdifferential calculus

Suppose f is convex and differentiable. Then

$$f(y) \geq f(x) + \nabla f(x)^T (y - x).$$

Boyd & Vandenberghe, Figure 3.2.
Suppose f is convex and differentiable. Then

$$f(y) \geq f(x) + \nabla f(x)^T (y - x).$$

Boyd & Vandenberghe, Figure 3.2.

We say that g is a subgradient of f at x if

$$f(y) \geq f(x) + g^T (y - x) \quad \forall y.$$
Digression: subdifferential calculus (cont.)

We define

$$\partial f(x) := \{\text{all subgradients of } f \text{ at } x\}.$$
Digression: subdifferential calculus (cont.)

We define

\[\partial f(x) := \{ \text{all subgradients of } f \text{ at } x \}. \]

- \(\partial f(x) \) is a closed convex set (can be empty).
We define

$$\partial f(x) := \{\text{all subgradients of } f \text{ at } x\}.$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x.
We define

$$\partial f(x) := \{\text{all subgradients of } f \text{ at } x\}.$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x.
- If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$.
We define

$$\partial f(x) := \{\text{all subgradients of } f \text{ at } x\}.$$

- $\partial f(x)$ is a closed convex set (can be empty).
- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x.
- If $\partial f(x) = \{g\}$, then f is differentiable at x and $\nabla f(x) = g$.

Basic properties:

- $\partial(\alpha f) = \alpha \partial f$ if $\alpha > 0$.
- $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$.

Example:

$$f(x) = |x|$$

$$\partial f(x) = \begin{cases}
\{-1\} & \text{ if } x < 0 \\
[-1, 1] & \text{ if } x = 0 \\
\{1\} & \text{ if } x > 0
\end{cases}.$$
Recall: If f is convex and differentiable, then

$$f(x^*) = \inf_x f(x) \iff 0 = \nabla f(x^*).$$
Recall: If f is convex and differentiable, then

$$f(x^*) = \inf_x f(x) \iff 0 = \nabla f(x^*).$$

Theorem: Let f be a (not necessarily differentiable) convex function. Then

$$f(x^*) = \inf_x f(x) \iff 0 \in \partial f(x^*).$$
Recall: If f is convex and differentiable, then

$$f(x^*) = \inf_x f(x) \iff 0 = \nabla f(x^*).$$

Theorem: Let f be a (not necessarily differentiable) convex function. Then

$$f(x^*) = \inf_x f(x) \iff 0 \in \partial f(x^*).$$

Proof.

$$f(y) \geq f(x^*) + 0 \cdot (y - x^*) \iff 0 \in \partial f(x^*).$$
Recall: If \(f \) is convex and differentiable, then

\[
f(x^*) = \inf_x f(x) \iff 0 = \nabla f(x^*).
\]

Theorem: Let \(f \) be a (not necessarily differentiable) convex function. Then

\[
f(x^*) = \inf_x f(x) \iff 0 \in \partial f(x^*).
\]

Proof.

\[
f(y) \geq f(x^*) + 0 \cdot (y - x^*) \iff 0 \in \partial f(x^*).
\]

Despite its simplicity, this is a very powerful and important result.
The function

$$f(x_i) := \frac{1}{2} ||y - Ax||^2_2 + \alpha \sum_{k=1}^{p} |x_k|$$

is convex. Its minimum is obtained if $0 \in \partial f(x^*)$.
The function

\[f(x_i) := \frac{1}{2} \| y - Ax \|^2 + \alpha \sum_{k=1}^{p} |x_k| \]

is convex. Its minimum is obtained if \(0 \in \partial f(x^*) \).

Let \(g := \frac{\partial}{\partial x_i} \| y - Ax \|^2 = A_T (A_{-i}x_{-i} - y) + A_{-i} A_i x_i \).

Then,

\[\partial f(x) = \begin{cases}
\{ g - \alpha \} & \text{if } x_i < 0 \\
[g - \alpha, g + \alpha] & \text{if } x_i = 0 \\
\{ g + \alpha \} & \text{if } x_i > 0
\end{cases} \]
The function

\[f(x_i) := \frac{1}{2} \| y - Ax \|_2^2 + \alpha \sum_{k=1}^{p} |x_k| \]

is convex. Its minimum is obtained if \(0 \in \partial f(x^*) \).

Let \(g := \frac{\partial}{\partial x_i} \| y - Ax \|_2^2 = A_i^T(A_i x_i - y) + A_i^T A_i x_i \).

Then,

\[\partial f(x) = \begin{cases}
\{g - \alpha\} & \text{if } x_i < 0 \\
[g - \alpha, g + \alpha] & \text{if } x_i = 0 \\
\{g + \alpha\} & \text{if } x_i > 0
\end{cases} \]

Now,

\[g - \alpha = 0 \iff x_i = \frac{A_i^T(y - A_i x_i) + \alpha}{A_i^T A_i} = g^* + \frac{\alpha}{\| A_i \|_2^2}. \]
The function
\[
f(x_i) := \frac{1}{2} \| y - Ax \|_2^2 + \alpha \sum_{k=1}^{p} |x_k|
\]
is convex. Its minimum is obtained if \(0 \in \partial f(x^*)\).
Let \(g := \frac{\partial}{\partial x_i} \| y - Ax \|_2^2 = A_i^T (A_i x - i - y) + A_i^T A_i x_i\).
Then,
\[
\partial f(x) = \begin{cases}
\{g - \alpha\} & \text{if } x_i < 0 \\
[g - \alpha, g + \alpha] & \text{if } x_i = 0 \\
\{g + \alpha\} & \text{if } x_i > 0
\end{cases} .
\]
Now,
\[
g - \alpha = 0 \iff x_i = \frac{A_i^T (y - A_i x_i - i) + \alpha}{A_i^T A_i} = g^* + \frac{\alpha}{\| A_i \|_2^2}.
\]
This implies \(0 \in \partial f(x^*)\) if \(x^* = g^* + \frac{\alpha}{\| A_i \|_2^2} < 0\).
Similarly,

\[g + \alpha = 0 \iff x_i = \frac{A_i^T(y - A_{-i}x_{-i}) - \alpha}{A_i^T A_i} = g^* - \frac{\alpha}{\|A_i\|^2}. \]
Similarly,

\[g + \alpha = 0 \iff x_i = \frac{A_i^T(y - A_{-i}x_{-i}) - \alpha}{A_i^T A_i} = g^* - \frac{\alpha}{\|A_i\|^2}. \]

Therefore,

\[0 \in \partial f(x^*) \text{ if } x^* = g^* - \frac{\alpha}{\|A_i\|^2} > 0. \]
Similarly,

\[g + \alpha = 0 \iff x_i = \frac{A_i^T(y - A_i x_i) - \alpha}{A_i^T A_i} = g^* - \frac{\alpha}{\|A_i\|_2^2}. \]

Therefore,

\[0 \in \partial f(x^*) \text{ if } x^* = g^* - \frac{\alpha}{\|A_i\|_2^2} > 0. \]

We found a (unique) \(x^* \) so that \(0 \in \partial f(x^*) \) if

\[g^* < -\frac{\alpha}{\|A_i\|_2^2} \quad \text{or} \quad g^* > \frac{\alpha}{\|A_i\|_2^2}. \]

What happens when \(-\frac{\alpha}{\|A_i\|_2^2} \leq g^* \leq \frac{\alpha}{\|A_i\|_2^2}\)?
We have

\[-\frac{\alpha}{\|A_i\|^2_2} \leq g^* \leq \frac{\alpha}{\|A_i\|^2_2} \iff -\frac{\alpha}{\|A_i\|^2_2} \leq \frac{A_i^T(y - A_{-i}x_{-i})}{A_i^TA_i} \leq \frac{\alpha}{\|A_i\|^2_2} \]

\[\iff -\alpha \leq A_i^T(y - A_{-i}x_{-i}) \leq \alpha.\]

If \(x_i = 0\), then \(g = A_i^T(y - A_{-i}x_{-i})\) and so \(0 \in [g - \alpha, g + \alpha]\).
We have

\[-\frac{\alpha}{\|A_i\|_2^2} \leq g^* \leq \frac{\alpha}{\|A_i\|_2^2} \iff \frac{\alpha}{\|A_i\|_2^2} \leq \frac{A_i^T(y - A_{-i}x_{-i})}{A_i^TA_i} \leq \frac{\alpha}{\|A_i\|_2^2} \]

\[\iff -\alpha \leq A_i^T(y - A_{-i}x_{-i}) \leq \alpha.\]

If \(x_i = 0\), then \(g = A_i^T(y - A_{-i}x_{-i})\) and so \(0 \in [g - \alpha, g + \alpha]\).

We have therefore shown that \(0 \in \partial f(x^*)\) if \(x^* = 0\) and

\[-\frac{\alpha}{\|A_i\|_2^2} \leq g^* \leq \frac{\alpha}{\|A_i\|_2^2}.\]
We have shown the following:

\[0 \in \partial f(x^*) \text{ if } \begin{cases} x^* = g^* + \frac{\alpha}{\|A_i\|_2^2} & \text{and } g^* < -\frac{\alpha}{\|A_i\|_2^2} \\ x^* = g^* - \frac{\alpha}{\|A_i\|_2^2} & \text{and } g^* > \frac{\alpha}{\|A_i\|_2^2} \\ x^* = 0 & \text{and } -\frac{\alpha}{\|A_i\|_2^2} \leq g^* \leq \frac{\alpha}{\|A_i\|_2^2} \end{cases} \]
We have shown the following:

\[0 \in \partial f(x^*) \quad \text{if} \begin{cases}
 x^* = g^* + \frac{\alpha}{\|A_i\|^2_2} & \text{and} \quad g^* < -\frac{\alpha}{\|A_i\|^2_2} \\
 x^* = g^* - \frac{\alpha}{\|A_i\|^2_2} & \text{and} \quad g^* > \frac{\alpha}{\|A_i\|^2_2} \\
 x^* = 0 & \text{and} \quad -\frac{\alpha}{\|A_i\|^2_2} \leq g^* \leq \frac{\alpha}{\|A_i\|^2_2}.
\]

Therefore, the minimum of \(f(x) \) is obtained at

\[x^* = \begin{cases}
 g^* + \frac{\alpha}{\|A_i\|^2_2} & \text{if} \quad g^* < -\frac{\alpha}{\|A_i\|^2_2} \\
 g^* - \frac{\alpha}{\|A_i\|^2_2} & \text{if} \quad g^* > \frac{\alpha}{\|A_i\|^2_2} \\
 0 & \text{if} \quad -\frac{\alpha}{\|A_i\|^2_2} \leq g^* \leq \frac{\alpha}{\|A_i\|^2_2}.
\]
We have shown the following:

\[0 \in \partial f(x^*) \text{ if } \begin{cases}
 x^* = g^* + \frac{\alpha}{\|A_i\|_2^2} & \text{and } g^* < -\frac{\alpha}{\|A_i\|_2^2} \\
 x^* = g^* - \frac{\alpha}{\|A_i\|_2^2} & \text{and } g^* > \frac{\alpha}{\|A_i\|_2^2} \\
 x^* = 0 & \text{and } -\frac{\alpha}{\|A_i\|_2^2} \leq g^* \leq \frac{\alpha}{\|A_i\|_2^2}.
\]

Therefore, the minimum of \(f(x) \) is obtained at

\[x^* = \begin{cases}
 g^* + \frac{\alpha}{\|A_i\|_2^2} & \text{if } g^* < -\frac{\alpha}{\|A_i\|_2^2} \\
 g^* - \frac{\alpha}{\|A_i\|_2^2} & \text{if } g^* > \frac{\alpha}{\|A_i\|_2^2} \\
 0 & \text{if } -\frac{\alpha}{\|A_i\|_2^2} \leq g^* \leq \frac{\alpha}{\|A_i\|_2^2}.
\]"
Soft-thresholding

Hard-thresholding:

\[\eta^H_\epsilon(x) = x 1_{|x| > \epsilon}. \]

Soft-thresholding:

\[\eta^S_\epsilon(x) = \text{sgn}(x)(|x| - \epsilon)_+. \]

Note: soft-thresholding shrinks the value until it hits zero (and then leaves it at zero).

\[\eta^S_\epsilon(x) = \begin{cases}
 x - \epsilon & \text{if } x > \epsilon \\
 x + \epsilon & \text{if } x < -\epsilon \\
 0 & \text{if } -\epsilon \leq x \leq \epsilon
\end{cases}. \]
To solve the lasso problem using coordinate descent:

- Pick an initial point x.
- Cycle through the coordinates and perform the updates

$$x_i \rightarrow \eta_{\alpha/\|A_i\|^2_2} \left(\frac{A_i^T(y - A_{-i}x_{-i})}{A_i^T A_i} \right).$$

- Continue until convergence (i.e., stop when the coordinates vary less than some threshold).

Exercise: Implement this algorithm in Python.