Markov chains

Let $S := \{s_1, s_2, \ldots \}$ be a countable set.
Markov chains

- Let \(S := \{s_1, s_2, \ldots \} \) be a countable set.
- A (discrete time) **Markov chain** is a discrete stochastic process \(\{X_n : n = 0, 1, \ldots \} \) such that

 For all \(i,j,i_0,\ldots,i_{n-1} \in S \), and all \(n \geq 0 \):
 \[
 P(X_{n+1} = j | X_0 = i_0, \ldots, X_n = i_{n-1}) = P(X_{n+1} = j | X_n = i).
 \]

 Interpretation: Given the present \(X_n \), the future \(X_{n+1} \) is independent of the past \((X_0, \ldots, X_{n-1}) \).
Markov chains

- Let $S := \{s_1, s_2, \ldots \}$ be a countable set.

- A (discrete time) **Markov chain** is a discrete stochastic process \{\(X_n : n = 0, 1, \ldots\)\} such that
 - \(X_n\) is an \(S\)-valued random variable \(\forall n \geq 0\).
Markov chains

Let $S := \{s_1, s_2, \ldots \}$ be a countable set.

A (discrete time) Markov chain is a discrete stochastic process
$
\{X_n : n = 0, 1, \ldots \}
$
such that

1. X_n is an S-valued random variable $\forall n \geq 0$.

2. (Markov Property) For all $i, j, i_0, \ldots, i_{n-1} \in S$, and all $n \geq 0$:

• Let $S := \{s_1, s_2, \ldots \}$ be a countable set.

• A (discrete time) **Markov chain** is a discrete stochastic process \(\{X_n : n = 0, 1, \ldots \} \) such that
 1. \(X_n \) is an \(S \)-valued random variable \(\forall n \geq 0 \).
 2. (Markov Property) For all \(i, j, i_0, \ldots, i_{n-1} \in S \), and all \(n \geq 0 \):
 \[
 P(X_{n+1} = j | X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i).
 \]
Let $S := \{s_1, s_2, \ldots \}$ be a countable set.

A (discrete time) **Markov chain** is a discrete stochastic process \(\{X_n : n = 0, 1, \ldots \} \) such that

1. \(X_n \) is an \(S \)-valued random variable \(\forall n \geq 0 \).

2. (Markov Property) For all \(i, j, i_0, \ldots, i_{n-1} \in S \), and all \(n \geq 0 \):
 \[
P(X_{n+1} = j | X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i).
 \]

Interpretation: Given the present \(X_n \), the future \(X_{n+1} \) is independent of the past \((X_0, \ldots, X_{n-1}) \).
Markov chains

- Let $S := \{s_1, s_2, \ldots \}$ be a countable set.

- A (discrete time) **Markov chain** is a discrete stochastic process \(\{X_n : n = 0, 1, \ldots \} \) such that
 1. \(X_n \) is an \(S \)-valued random variable \(\forall n \geq 0 \).
 2. **(Markov Property)** For all \(i, j, i_0, \ldots, i_{n-1} \in S \), and all \(n \geq 0 \):
 \[
 P(X_{n+1} = j | X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i).
 \]

Interpretation: Given the present \(X_n \), the future \(X_{n+1} \) is independent of the past \((X_0, \ldots, X_{n-1}) \).

- The elements of \(S \) are called the **states** of the Markov chain.
Markov chains

- Let $S := \{s_1, s_2, \ldots \}$ be a countable set.

- A (discrete time) **Markov chain** is a discrete stochastic process $\{X_n : n = 0, 1, \ldots \}$ such that
 1. X_n is an S-valued random variable $\forall n \geq 0$.
 2. (Markov Property) For all $i, j, i_0, \ldots, i_{n-1} \in S$, and all $n \geq 0$:
 \[P(X_{n+1} = j | X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i). \]

Interpretation: Given the present X_n, the future X_{n+1} is independent of the past (X_0, \ldots, X_{n-1}).

- The elements of S are called the **states** of the Markov chain.
- When $X_n = j$, we say that the process is in state j at time n.
A Markov chain is **homogeneous** (or **stationary**) if for all \(n \geq 0 \) and all \(i, j \in S \),

\[
P(X_{n+1} = j \mid X_n = i) = P(X_1 = j \mid X_0 = i) =: p(i, j).
\]
A Markov chain is **homogeneous** (or **stationary**) if for all \(n \geq 0 \) and all \(i, j \in S \),

\[
P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).
\]

In other words, the **transition probabilities** do not depend on time.
A Markov chain is **homogeneous** (or **stationary**) if for all $n \geq 0$ and all $i, j \in S$,

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).$$

In other words, the **transition probabilities** do not depend on time.

- We will only consider homogeneous chains in what follows.
A Markov chain is **homogeneous** (or **stationary**) if for all $n \geq 0$ and all $i, j \in S$,

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).$$

In other words, the **transition probabilities** do not depend on time.

- We will only consider homogeneous chains in what follows.
- We denote by $P := (p(i, j))_{i, j \in S}$ the **transition matrix** of the chain.
A Markov chain is homogeneous (or stationary) if for all \(n \geq 0 \) and all \(i, j \in S \),

\[
P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).
\]

In other words, the transition probabilities do not depend on time.

We will only consider homogeneous chains in what follows.

We denote by \(P := (p(i, j))_{i, j \in S} \) the transition matrix of the chain.

Note: \(P \) is a stochastic matrix, i.e.,

\[
\forall i, j \in S, \ p(i, j) \geq 0, \quad \text{and} \quad \forall i \in S, \ \sum_{j \in S} p(i, j) = 1.
\]
A Markov chain is **homogeneous** (or **stationary**) if for all \(n \geq 0 \) and all \(i, j \in S \),

\[
P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j).
\]

In other words, the **transition probabilities** do not depend on time.

- We will only consider homogeneous chains in what follows.
- We denote by \(P := (p(i, j))_{i,j \in S} \) the **transition matrix** of the chain.
- Note: \(P \) is a **stochastic matrix**, i.e.,

\[
\forall i, j \in S, \quad p(i, j) \geq 0, \quad \text{and} \quad \forall i \in S, \quad \sum_{j \in S} p(i, j) = 1.
\]

- Conversely, every stochastic matrix is the transition matrix of some homogeneous discrete time Markov chain.
Example 1: (Two-state Markov chain)

\[S = \{0, 1\}, \quad p(0, 1) = a, \quad p(1, 0) = b, \quad a, b \in [0, 1] \]

\[P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix}. \]
Example 1: (Two-state Markov chain)

\[S = \{0, 1\}, \quad p(0, 1) = a, \quad p(1, 0) = b, \quad a, b \in [0, 1] \]

\[P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix}. \]

We naturally represent \(P \) using a transition (or state) diagram:
Example 1: (Two-state Markov chain)

\[S = \{0, 1\}, \quad p(0, 1) = a, \quad p(1, 0) = b, \quad a, b \in [0, 1] \]

\[P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix}. \]

We naturally represent \(P \) using a transition (or state) diagram:

Interpretation: machine is either broken (0) or working (1) at start of \(n \)-th day.
Example 2: (Simple random walk) Let $\xi_1, \xi_2, \xi_3, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$
\xi_i = \begin{cases}
+1 & P(\xi_i = +1) = p \\
0 & P(\xi_i = 0) = r \\
-1 & P(\xi_i = -1) = q
\end{cases},
$$

where $p + r + q = 1$, $p, r, q \geq 0$.

Let X_0 be an integer valued random variable independent of the ξ_i's. Define $\forall n \geq 1$,

$$
X_n = X_0 + n \sum_{i=1}^{n} \xi_i.
$$

The process is a random walk.
Example 2: (Simple random walk) Let $\xi_1, \xi_2, \xi_3, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$
\xi_i = \begin{cases}
+1 & P(\xi_i = +1) = p \\
0 & P(\xi_i = 0) = r \\
-1 & P(\xi_i = -1) = q
\end{cases},
$$

where $p + r + q = 1, \ p, r, q \geq 0$.

- Let X_0 be an integer valued random variable independent of the ξ_i’s.
Example 2: (Simple random walk) Let $\xi_1, \xi_2, \xi_3, \ldots$ be iid random variables such that $\forall i \geq 1$,

$$
\xi_i = \begin{cases}
+1 & P(\xi_i = +1) = p \\
0 & P(\xi_i = 0) = r \\
-1 & P(\xi_i = -1) = q
\end{cases},
$$

where $p + r + q = 1$, $p, r, q \geq 0$.

- Let X_0 be an integer valued random variable independent of the ξ_i’s.
- Define $\forall n \geq 1$,

$$
X_n = X_0 + \sum_{i=1}^{n} \xi_i.
$$
Example 2: (Simple random walk) Let \(\xi_1, \xi_2, \xi_3, \ldots \) be iid random variables such that \(\forall i \geq 1, \)

\[
\xi_i = \begin{cases}
+1 & P(\xi_i = +1) = p \\
0 & P(\xi_i = 0) = r \\
-1 & P(\xi_i = -1) = q
\end{cases},
\]

where \(p + r + q = 1, p, r, q \geq 0. \)

- Let \(X_0 \) be an integer valued random variable independent of the \(\xi_i \)'s.
- Define \(\forall n \geq 1, \)

\[
X_n = X_0 + \sum_{i=1}^{n} \xi_i.
\]

- The process is a random walk.
Here $S = \{0, \pm 1, \pm 2, \ldots \}$.

Exercise: What is P for that Markov chain?
Here $S = \{0, \pm 1, \pm 2, \ldots \}$.

Exercise: What is P for that Markov chain?
Let \(\{X_n : n \geq 0\} \) be a Markov chain.
Let \(\{X_n : n \geq 0\} \) be a Markov chain.

- We define the **initial distribution** of the chain by

\[
\mu_0(i) := P(X_0 = i) \quad (i \in S).
\]

n-step transitions
Let \(\{X_n : n \geq 0\} \) be a Markov chain.

- We define the **initial distribution** of the chain by

 \[
 \mu_0(i) := P(X_0 = i) \quad (i \in S).
 \]

- All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.
Let \(\{X_n : n \geq 0\} \) be a Markov chain.

- We define the **initial distribution** of the chain by
 \[
 \mu_0(i) := P(X_0 = i) \quad (i \in S).
 \]

- All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.

- For \(n \geq 1 \), we define the **\(n \)-step transition probability** \(p^n(i, j) \) by
 \[
 p^n(i, j) := P(X_n = j | X_0 = i) = P(X_{n+m} = j | X_m = i).
 \]
Let \(\{X_n : n \geq 0\} \) be a Markov chain.

- We define the **initial distribution** of the chain by
 \[
 \mu_0(i) := P(X_0 = i) \quad (i \in S).
 \]

- All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.

- For \(n \geq 1 \), we define the **\(n \)-step transition probability** \(p^n(i, j) \) by
 \[
 p^n(i, j) := P(X_n = j|X_0 = i) = P(X_{n+m} = j|X_m = i).
 \]

Also, define
\[
p^0(i, j) = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}.
\]
Let \(\{X_n : n \geq 0\} \) be a Markov chain.

- We define the **initial distribution** of the chain by
 \[
 \mu_0(i) := P(X_0 = i) \quad (i \in S).
 \]

- All distributional properties of a (homogeneous) Markov Chain are determined by its initial distribution and transition probability matrix.

- For \(n \geq 1 \), we define the **\(n \)-step transition probability** \(p^n(i, j) \) by
 \[
 p^n(i, j) := P(X_n = j | X_0 = i) = P(X_{n+m} = j | X_m = i).
 \]

 Also, define
 \[
 p^0(i, j) = \begin{cases}
 1 & i = j \\
 0 & i \neq j
 \end{cases}.
 \]

- We define the **\(n \)-step transition matrix** by
 \[
 P^n := (p^n(i, j) : i, j \in S).
 \]
Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$$
Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$$

In particular, for all $n \geq 1$,

$$P^{(n)} = P \cdot P^{(n-1)} = \cdots = P^n.$$
Theorem: (The Chapman-Kolmogorov Equations) We have for all \(m, n \geq 1 \):

\[P^{n+m} = P^n \cdot P^m. \]

In particular, for all \(n \geq 1 \),

\[P^n = P \cdot P^{n-1} = \ldots = P^n. \]

Moral: \(n \)-step transition probabilities are computed using matrix multiplications.
Theorem: (The Chapman-Kolmogorov Equations) We have for all \(m, n \geq 1 \):

\[
P^{(n+m)} = P^{(n)} \cdot P^{(m)}.
\]

In particular, for all \(n \geq 1 \),

\[
P^{(n)} = P \cdot P^{(n-1)} = \ldots = P^n.
\]

Moral: \(n \)-step transition probabilities are computed using matrix multiplications.

- Let \(\mu_n := (\mu_n(i) : i \in S) \) denote the distribution of \(X_n \):

\[
\mu_n(i) := P(X_n = i).
\]
Theorem: (The Chapman-Kolmogorov Equations) We have for all \(m, n \geq 1 \):

\[
P^{(n+m)} = P^{(n)} \cdot P^{(m)}.
\]

In particular, for all \(n \geq 1 \),

\[
P^{(n)} = P \cdot P^{(n-1)} = \cdots = P^n.
\]

Moral: \(n \)-step transition probabilities are computed using matrix multiplications.

- Let \(\mu_n := (\mu_n(i) : i \in S) \) denote the distribution of \(X_n \):

\[
\mu_n(i) := P(X_n = i).
\]

Proposition: We have

\[
\mu_{m+n} = \mu_m P^n, \quad \text{and} \quad \mu_n = \mu_0 P^n.
\]
Theorem: (The Chapman-Kolmogorov Equations) We have for all $m, n \geq 1$:

$$P^{(n+m)} = P^{(n)} \cdot P^{(m)}.$$

In particular, for all $n \geq 1$,

$$P^{(n)} = P \cdot P^{(n-1)} = \ldots = P^n.$$

Moral: n-step transition probabilities are computed using matrix multiplications.

- Let $\mu_n := (\mu_n(i) : i \in S)$ denote the distribution of X_n:

 $$\mu_n(i) := P(X_n = i).$$

Proposition: We have

$$\mu_{m+n} = \mu_m P^n, \quad \text{and} \quad \mu_n = \mu_0 P^n.$$

Moral: Distributional computations for Markov Chains are just matrix multiplications.
Reducibility:

A state \(j \in S \) is said to be **accessible** from \(i \in S \) (denoted \(i \rightarrow j \)) if a system started in state \(i \) has a non-zero probability of transitioning into state \(j \) at some point.

A Markov chain is said to be **irreducible** if its state space is a single communicating class.
Reducibility:

- A state \(j \in S \) is said to be **accessible** from \(i \in S \) (denoted \(i \rightarrow j \)) if a system started in state \(i \) has a non-zero probability of transitioning into state \(j \) at some point.

- A state \(i \in S \) is said to **communicate** with state \(j \in S \) (denoted \(i \leftrightarrow j \)) if both \(i \rightarrow j \) and \(j \rightarrow i \).
Reducibility:

- A state $j \in S$ is said to be **accessible** from $i \in S$ (denoted $i \rightarrow j$) if a system started in state i has a non-zero probability of transitioning into state j at some point.

- A state $i \in S$ is said to **communicate** with state $j \in S$ (denoted $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$.

Note: Communication is an equivalence relation.
Reducibility:

- A state $j \in S$ is said to be accessible from $i \in S$ (denoted $i \rightarrow j$) if a system started in state i has a non-zero probability of transitioning into state j at some point.

- A state $i \in S$ is said to communicate with state $j \in S$ (denoted $i \leftrightarrow j$) if both $i \rightarrow j$ and $j \rightarrow i$.

Note: Communication is an equivalence relation.

A Markov chain is said to be irreducible if its state space is a single communicating class.
Transience and periodicity

- **Transience:**
 - A state \(i \in S \) is said to be **transient** if, given that we start in state \(i \), there is a non-zero probability that we will never return to \(i \).

- **Periodicity:**
 - A state \(i \in S \) has period \(k \) if \(k = \gcd \{ n > 0 : P(X_n = i | X_0 = i) > 0 \} \).
 - For example, suppose you start in state \(i \) and can only return to \(i \) at time 6, 8, 10, 12, etc. Then the period of \(i \) is 2.
 - If \(k = 1 \), then the state is said to be **aperiodic**.
 - A Markov chain is **aperiodic** if every state is aperiodic.
Transience and periodicity

- **Transience:**
 - A state \(i \in S \) is said to be **transient** if, given that we start in state \(i \), there is a non-zero probability that we will never return to \(i \).
 - A state is **recurrent** if it is not transient.

Periodicity:

- An integer \(k \) of \(X \) is said to have period \(k \) if \(k = \text{gcd}\{n > 0 : P(X_n = i | X_0 = i) > 0)\} \).

 For example, suppose you start in state \(i \) and can only return to \(i \) at times \(6, 8, 10, 12, \ldots \). Then the period of \(i \) is 2.

 If \(k = 1 \), then the state is said to be **aperiodic**.

 A Markov chain is **aperiodic** if every state is aperiodic.
Transience and periodicity

- **Transience:**
 - A state $i \in S$ is said to be **transient** if, given that we start in state i, there is a non-zero probability that we will never return to i.
 - A state is **recurrent** if it is not transient.
 - The **recurrence time** of state $i \in S$ is
 $$T_i := \min\{n \geq 1 : X_n = i \text{ given } X_0 = i\}.$$
Transience and periodicity

- **Transience:**
 - A state $i \in S$ is said to be **transient** if, given that we start in state i, there is a non-zero probability that we will never return to i.
 - A state is **recurrent** if it is not transient.
 - The **recurrence time** of state $i \in S$ is
 \[T_i := \min\{n \geq 1 : X_n = i \text{ given } X_0 = i\} \]
 - Note: $i \in S$ is recurrent iff $P(T_i < \infty) = 1$.

- **Periodicity:**
 - A state $i \in S$ has period k if $k = \gcd\{n > 0 : P(X_n = i | X_0 = i) > 0\}$.
 - For example, suppose you start in state i and can only return to i at time 6, 8, 10, 12, etc. Then the period of i is 2.
 - If $k = 1$, then the state is said to be **aperiodic**.
 - A Markov chain is **aperiodic** if every state is aperiodic.
Transience and periodicity

Transience:
- A state \(i \in S \) is said to be **transient** if, given that we start in state \(i \), there is a non-zero probability that we will never return to \(i \).
- A state is **recurrent** if it is not transient.
- The **recurrence time** of state \(i \in S \) is
 \[
 T_i := \min \{ n \geq 1 : X_n = i \text{ given } X_0 = i \}.
 \]
- Note: \(i \in S \) is recurrent iff \(P(T_i < \infty) = 1 \).
- A recurrent state \(i \in S \) is **positive recurrent** if \(E[T_i] < \infty \).

Periodicity:
- A state \(i \in S \) has period \(k \) if
 \[
 k = \gcd \{ n > 0 : P(X_n = i|X_0 = i) > 0 \}.
 \]
Transience and periodicity

Transience:

- A state \(i \in S \) is said to be **transient** if, given that we start in state \(i \), there is a non-zero probability that we will never return to \(i \).
- A state is **recurrent** if it is not transient.
- The **recurrence time** of state \(i \in S \) is
 \[T_i := \min\{n \geq 1 : X_n = i \text{ given } X_0 = i\} \text{.} \]
- Note: \(i \in S \) is recurrent iff \(P(T_i < \infty) = 1 \).
- A recurrent state \(i \in S \) is **positive recurrent** if \(E[T_i] < \infty \).

Periodicity:

- A state \(i \in S \) has period \(k \) if
 \[k = \gcd\{n > 0 : P(X_n = i|X_0 = i) > 0\} \text{.} \]

 For example, suppose you start in state \(i \) and can only return to \(i \) at time 6, 8, 10, 12, etc.. Then the period of \(i \) is 2.
Transience and periodicity

- **Transience:**
 - A state $i \in S$ is said to be **transient** if, given that we start in state i, there is a non-zero probability that we will never return to i.
 - A state is **recurrent** if it is not transient.
 - The **recurrence time** of state $i \in S$ is $T_i := \min\{n \geq 1 : X_n = i \text{ given } X_0 = i\}$.
 - Note: $i \in S$ is recurrent iff $P(T_i < \infty) = 1$.
 - A recurrent state $i \in S$ is **positive recurrent** if $E[T_i] < \infty$.

- **Periodicity:**
 - A state $i \in S$ has period k if
 $$k = \gcd\{n > 0 : P(X_n = i|X_0 = i) > 0\}.$$
 For example, suppose you start in state i and can only return to i at time $6, 8, 10, 12, \text{ etc.}$.. Then the period of i is 2.
 - If $k = 1$, then the state is said to be aperiodic.
Transience:

- A state \(i \in S\) is said to be \textit{transient} if, given that we start in state \(i\), there is a non-zero probability that we will never return to \(i\).
- A state is \textit{recurrent} if it is not transient.
- The \textit{recurrence time} of state \(i \in S\) is
 \[T_i := \min\{n \geq 1 : X_n = i \text{ given } X_0 = i\}. \]
- Note: \(i \in S\) is recurrent iff \(P(T_i < \infty) = 1\).
- A recurrent state \(i \in S\) is \textit{positive recurrent} if \(E[T_i] < \infty\).

Periodicity:

- A state \(i \in S\) has period \(k\) if
 \[k = \gcd\{n > 0 : P(X_n = i|X_0 = i) > 0\}. \]

 For example, suppose you start in state \(i\) and can only return to \(i\) at time 6, 8, 10, 12, etc.. Then the period of \(i\) is 2.
- If \(k = 1\), then the state is said to be \textit{aperiodic}.

A Markov chain is \textit{aperiodic} if every state is aperiodic.
Limiting behavior of Markov chains: What happens to $p^n(i, j)$ as $n \to \infty$?
Limiting behavior of Markov chains: What happens to $p^n(i,j)$ as $n \to \infty$?

Example: (The two-state Markov chain)

If $(a, b) \neq (0, 0)$, we have (exercise):

\[
P^n = \frac{1}{a+b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1-a-b)^n}{a+b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.
\]
Limiting behavior of Markov chains: What happens to $p^n(i, j)$ as $n \to \infty$?

Example: (The two-state Markov chain)

If $(a, b) \neq (0, 0)$, we have (exercise):

$$P^n = \frac{1}{a + b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1 - a - b)^n}{a + b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.$$

Thus, if $(a, b) \neq (0, 0)$ and $(a, b) \neq (1, 1)$, then

$$\lim_{n \to \infty} p^n(0, 0) = \lim_{n \to \infty} p^n(1, 0) = \frac{b}{a + b},$$
$$\lim_{n \to \infty} p^n(0, 1) = \lim_{n \to \infty} p^n(1, 1) = \frac{a}{a + b}.$$
Limiting behavior of Markov chains: What happens to $p^n(i, j)$ as $n \to \infty$?

Example: (The two-state Markov chain)

If $(a, b) \neq (0, 0)$, we have (exercise):

$$P^n = \frac{1}{a + b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1 - a - b)^n}{a + b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.$$

Thus, if $(a, b) \neq (0, 0)$ and $(a, b) \neq (1, 1)$, then

$$\lim_{n \to \infty} p^n(0, 0) = \lim_{n \to \infty} p^n(1, 0) = \frac{b}{a + b},$$

$$\lim_{n \to \infty} p^n(0, 1) = \lim_{n \to \infty} p^n(1, 1) = \frac{a}{a + b}.$$

Thus, the chain has a **limiting distribution**.
Limiting behavior of Markov chains: What happens to $p^n(i, j)$ as $n \to \infty$?

Example: (The two-state Markov chain)

If $(a, b) \neq (0, 0)$, we have (exercise):

$$P^n = \frac{1}{a + b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1 - a - b)^n}{a + b} \begin{pmatrix} a & -a \\ -b & b \end{pmatrix}.$$

Thus, if $(a, b) \neq (0, 0)$ and $(a, b) \neq (1, 1)$, then

$$\lim_{n \to \infty} p^n(0, 0) = \lim_{n \to \infty} p^n(1, 0) = \frac{b}{a + b},$$

$$\lim_{n \to \infty} p^n(0, 1) = \lim_{n \to \infty} p^n(1, 1) = \frac{a}{a + b}.$$

Thus, the chain has a limiting distribution. The limiting distribution is independent of the initial state.
Recall: $\mu_{n+1} = \mu_n P$.

A vector $\pi = (\pi_i : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \geq 0\}$ if

1. $0 \leq \pi_i \leq 1 \forall i \in S$.
2. $\sum_{i \in S} \pi_i = 1$.
3. $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let $\{X_n : n \geq 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

1. The chain has a unique stationary distribution π.
2. For all $i \in S$, $\lim_{n \to \infty} P(X_n = i) = \pi(i)$.
3. $\pi(i) = \mathbb{E}[T_i]$.

$\pi(i)$ can be interpreted as the average proportion of time spent by the chain in state i.

12/12
Recall: \(\mu_{n+1} = \mu_n P \).

A vector \(\pi = (\pi(i) : i \in S) \) is said to be a **stationary distribution** for a Markov chain \(\{X_n : n \geq 0\} \) if

1. \(0 \leq \pi_i \leq 1 \ \forall i \in S \).
2. \(\sum_{i \in S} \pi_i = 1 \).
3. \(\pi = \pi P \), where \(P \) is the transition probability matrix of the Markov chain.
Recall: \(\mu_{n+1} = \mu_n P \).

A vector \(\pi = (\pi(i) : i \in S) \) is said to be a **stationary distribution** for a Markov chain \(\{X_n : n \geq 0\} \) if

1. \(0 \leq \pi_i \leq 1 \ \forall i \in S \).
2. \(\sum_{i \in S} \pi_i = 1 \).
3. \(\pi = \pi P \), where \(P \) is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.
Recall: \(\mu_{n+1} = \mu_n P \).

A vector \(\pi = (\pi(i) : i \in S) \) is said to be a stationary distribution for a Markov chain \(\{X_n : n \geq 0\} \) if

1. \(0 \leq \pi_i \leq 1 \ \forall i \in S \).
2. \(\sum_{i \in S} \pi_i = 1 \).
3. \(\pi = \pi P \), where \(P \) is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let \(\{X_n : n \geq 0\} \) be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then
Recall: $\mu_{n+1} = \mu_n P$.

A vector $\pi = (\pi(i) : i \in S)$ is said to be a \textbf{stationary distribution} for a Markov chain $\{X_n : n \geq 0\}$ if

1. $0 \leq \pi_i \leq 1 \ \forall i \in S$.
2. $\sum_{i \in S} \pi_i = 1$.
3. $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

\textbf{Theorem:} Let $\{X_n : n \geq 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

1. The chain has a unique stationary distribution π.
Recall: $\mu_{n+1} = \mu_n P$.

A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \geq 0\}$ if

1. $0 \leq \pi_i \leq 1 \ \forall i \in S$.
2. $\sum_{i \in S} \pi_i = 1$.
3. $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let $\{X_n : n \geq 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

1. The chain has a unique stationary distribution π.
2. For all $i \in S$, $\lim_{n \to \infty} P(X_n = i) = \pi(i)$.

Recall: $\mu_{n+1} = \mu_n P$.

A vector $\pi = (\pi(i) : i \in S)$ is said to be a stationary distribution for a Markov chain $\{X_n : n \geq 0\}$ if

1. $0 \leq \pi_i \leq 1 \ \forall i \in S$.
2. $\sum_{i \in S} \pi_i = 1$.
3. $\pi = \pi P$, where P is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let $\{X_n : n \geq 0\}$ be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

1. The chain has a unique stationary distribution π.
2. For all $i \in S$, $\lim_{n \to \infty} P(X_n = i) = \pi(i)$.
3. $\pi_i = \frac{1}{E[T_i]}$.

$\pi(i)$ can be interpreted as the average proportion of time spent by the chain in state i.

12/12
Recall: \(\mu_{n+1} = \mu_n P \).

A vector \(\pi = (\pi(i) : i \in S) \) is said to be a **stationary distribution** for a Markov chain \(\{X_n : n \geq 0\} \) if

1. \(0 \leq \pi_i \leq 1 \ \forall i \in S \).
2. \(\sum_{i \in S} \pi_i = 1 \).
3. \(\pi = \pi P \), where \(P \) is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let \(\{X_n : n \geq 0\} \) be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then

1. The chain has a unique stationary distribution \(\pi \).
2. For all \(i \in S \), \(\lim_{n \to \infty} P(X_n = i) = \pi(i) \).
3. \(\pi_i = \frac{1}{E[T_i]} \).

\(\pi(i) \) can be interpreted as the average proportion of time spent by the chain in state \(i \).