In the previous lecture, we discussed how \(K \)-means can be used to cluster points in \(\mathbb{R}^p \).

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as \(K \)-means.
- Can be used for various “types” of data (not only points in \(\mathbb{R}^p \)).
- Easy to implement. Only uses basic linear algebra.
In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^p.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various “types” of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:
Spectral clustering: overview

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^p.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various “types” of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1. Construct a *similarity matrix* measuring the similarity of pairs of objects.
In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^p.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various “types” of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1. Construct a *similarity matrix* measuring the similarity of pairs of objects.
2. Use the similarity matrix to construct a (weighted or unweighted) graph.
Spectral clustering: overview

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^p.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various “types” of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1. Construct a similarity matrix measuring the similarity of pairs of objects.
2. Use the similarity matrix to construct a (weighted or unweighted) graph.
3. Compute eigenvectors of the graph Laplacian.
Spectral clustering: overview

In the previous lecture, we discussed how K-means can be used to cluster points in \mathbb{R}^p.

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various “types” of data (not only points in \mathbb{R}^p).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1. Construct a similarity matrix measuring the similarity of pairs of objects.
2. Use the similarity matrix to construct a (weighted or unweighted) graph.
3. Compute eigenvectors of the graph Laplacian.
4. Cluster the graph using the eigenvectors of the graph Laplacian using the K-means algorithm.
We will use the following notation/conventions:

- \(G = (V, E) \) a graph with vertex set \(V = \{v_1, \ldots, v_n\} \) and edge set \(E \subseteq V \times V \).
We will use the following notation/conventions:

- $G = (V, E)$ a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \geq 0$.

The adjacency matrix of G is $W = W_G = (w_{ij})_{n \times n}$. We will assume W is symmetric (undirected graphs).

The degree of v_i is $d_i := \sum_{j=1}^{n} w_{ij}$.

The degree matrix of G is $D := \text{diag}(d_1, \ldots, d_n)$.

We denote the complement of $A \subset V$ by \overline{A}.

If $A \subset V$, then we let $1_A = (f_1, \ldots, f_n)^T \in \mathbb{R}^n$, where $f_i = 1$ if $v_i \in A$ and 0 otherwise.
We will use the following notation/conventions:

- $G = (V, E)$ a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \geq 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
We will use the following notation/conventions:

- $G = (V, E)$ a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \geq 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
- The degree of v_i is

$$d_i := \sum_{j=1}^n w_{ij}.$$
We will use the following notation/conventions:

- $G = (V, E)$ a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \geq 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
- The degree of v_i is
 $$d_i := \sum_{j=1}^n w_{ij}.$$
- The degree matrix of G is $D := \text{diag}(d_1, \ldots, d_n)$.
We will use the following notation/conventions:

- $G = (V, E)$ a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a weight $w_{ij} \geq 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
- The degree of v_i is
 \[d_i := \sum_{j=1}^n w_{ij}. \]
- The degree matrix of G is $D := \text{diag}(d_1, \ldots, d_n)$.
- We denote the complement of $A \subset V$ by \overline{A}.
We will use the following notation/conventions:

- **$G = (V, E)$** a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E \subset V \times V$.
- Each edge carries a *weight* $w_{ij} \geq 0$.
- The adjacency matrix of G is $W = W_G = (w_{ij})_{i,j=1}^n$. We will assume W is symmetric (undirected graphs).
- The *degree* of v_i is
 \[d_i := \sum_{j=1}^n w_{ij}. \]
- The *degree matrix* of G is $D := \text{diag}(d_1, \ldots, d_n)$.
- We denote the complement of $A \subset V$ by \overline{A}.
- If $A \subset V$, then we let $\mathbbm{1}_A = (f_1, \ldots, f_n)^T \in \mathbb{R}^n$, where $f_i = 1$ if $v_i \in A$ and 0 otherwise.
We assume we are given a measure of similarity s between data points $x_1, \ldots, x_n \in \mathcal{X}$:

$$s : \mathcal{X} \times \mathcal{X} \to [0, \infty).$$
We assume we are given a measure of similarity \(s \) between data points \(x_1, \ldots, x_n \in \mathcal{X} \):

\[
s : \mathcal{X} \times \mathcal{X} \rightarrow [0, \infty).
\]

We denote by \(s_{ij} := s(x_i, x_j) \) the \textit{measure of similarity} between \(x_i \) and \(x_j \).
We assume we are given a measure of similarity s between data points $x_1, \ldots, x_n \in \mathcal{X}$:

$$s : \mathcal{X} \times \mathcal{X} \rightarrow [0, \infty).$$

We denote by $s_{ij} := s(x_i, x_j)$ the measure of similarity between x_i and x_j.

Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).
Similary graphs

- We assume we are given a measure of similarity s between data points $x_1, \ldots, x_n \in \mathcal{X}$:

 $$s : \mathcal{X} \times \mathcal{X} \rightarrow [0, \infty).$$

- We denote by $s_{ij} := s(x_i, x_j)$ the measure of similarity between x_i and x_j.

- Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).

- Let $d_{ij} := d(x_i, x_j)$, the distance between x_i and x_j.

We assume we are given a measure of similarity s between data points $x_1, \ldots, x_n \in \mathcal{X}$:

$$s : \mathcal{X} \times \mathcal{X} \to [0, \infty).$$

We denote by $s_{ij} := s(x_i, x_j)$ the measure of similarity between x_i and x_j.

Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).

Let $d_{ij} := d(x_i, x_j)$, the distance between x_i and x_j.

From d_{ij} (or s_{ij}), we naturally build a similarity graph.
We assume we are given a measure of similarity s between data points $x_1, \ldots, x_n \in \mathcal{X}$:

$$s : \mathcal{X} \times \mathcal{X} \rightarrow [0, \infty).$$

We denote by $s_{ij} := s(x_i, x_j)$ the measure of similarity between x_i and x_j.

Equivalently, we may assume we have a measure of distance between data points (e.g. (\mathcal{X}, d) is a metric space).

Let $d_{ij} := d(x_i, x_j)$, the distance between x_i and x_j.

From d_{ij} (or s_{ij}), we naturally build a similarity graph.

We will discuss 3 popular ways of building a similarity graph.
Vertex set $= \{v_1, \ldots, v_n\}$ where n is the number of data points.
Vertex set = \(\{v_1, \ldots, v_n\} \) where \(n \) is the number of data points.

1. **The \(\epsilon \)-neighborhood graph**: Connect all points whose pairwise distances are smaller than some \(\epsilon > 0 \). We usually don’t weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

2. **The \(k \)-nearest neighbor graph**: The goal is to connect \(v_i \) to \(v_j \) if \(x_j \) is among the \(k \) nearest neighbors of \(x_i \). However, this leads to a directed graph. We therefore define the **mutual \(k \)-nearest neighbor graph**: \(v_i \) is adjacent to \(v_j \) if \(x_j \) is among the \(k \) nearest neighbors of \(x_i \) **and** \(x_i \) is among the \(k \) nearest neighbors of \(x_j \). We weight the edges by the similarity of their endpoints.
Vertex set = \(\{v_1, \ldots, v_n\} \) where \(n \) is the number of data points.

1. **The \(\epsilon \)-neighborhood graph**: Connect all points whose pairwise distances are smaller than some \(\epsilon > 0 \). We usually don’t weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

2. **The \(k \)-nearest neighbor graph**: The goal is to connect \(v_i \) to \(v_j \) if \(x_j \) is among the \(k \) nearest neighbors of \(x_i \). However, this leads to a directed graph. We therefore define:
Vertex set = \(\{v_1, \ldots, v_n\} \) where \(n \) is the number of data points.

1. **The \(\epsilon \)-neighborhood graph:** Connect all points whose pairwise distances are smaller than some \(\epsilon > 0 \). We usually don’t weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

2. **The \(k \)-nearest neighbor graph:** The goal is to connect \(v_i \) to \(v_j \) if \(x_j \) is among the \(k \) nearest neighbors of \(x_i \). However, this leads to a directed graph. We therefore define:
 - the \(k \)-nearest neighbor graph: \(v_i \) is adjacent to \(v_j \) iff \(x_j \) is among the \(k \) nearest neighbors of \(x_i \) **OR** \(x_i \) is among the \(k \) nearest neighbors of \(x_j \).
Vertex set = \{v_1, \ldots, v_n\} where \(n \) is the number of data points.

1. **The \(\epsilon \)-neighborhood graph**: Connect all points whose pairwise distances are smaller than some \(\epsilon > 0 \). We usually don’t weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

2. **The \(k \)-nearest neighbor graph**: The goal is to connect \(v_i \) to \(v_j \) if \(x_j \) is among the \(k \) nearest neighbors of \(x_i \). However, this leads to a directed graph. We therefore define:
 - the \(k \)-nearest neighbor graph: \(v_i \) is adjacent to \(v_j \) iff \(x_j \) is among the \(k \) nearest neighbors of \(x_i \) OR \(x_i \) is among the \(k \) nearest neighbors of \(x_j \).
 - the mutual \(k \)-nearest neighbor graph: \(v_i \) is adjacent to \(v_j \) iff \(x_j \) is among the \(k \) nearest neighbors of \(x_i \) AND \(x_i \) is among the \(k \) nearest neighbors of \(x_j \).
Vertex set = \{v_1, \ldots, v_n\} where \(n\) is the number of data points.

1. **The \(\epsilon\)-neighborhood graph:** Connect all points whose pairwise distances are smaller than some \(\epsilon > 0\). We usually don’t weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

2. **The \(k\)-nearest neighbor graph:** The goal is to connect \(v_i\) to \(v_j\) if \(x_j\) is among the \(k\) nearest neighbors of \(x_i\). However, this leads to a directed graph. We therefore define:
 - the \(k\)-nearest neighbor graph: \(v_i\) is adjacent to \(v_j\) iff \(x_j\) is among the \(k\) nearest neighbors of \(x_i\) OR \(x_i\) is among the \(k\) nearest neighbors of \(x_j\).
 - the mutual \(k\)-nearest neighbor graph: \(v_i\) is adjacent to \(v_j\) iff \(x_j\) is among the \(k\) nearest neighbors of \(x_i\) AND \(x_i\) is among the \(k\) nearest neighbors of \(x_j\).

We weight the edges by the similarity of their endpoints.
The fully connected graph: Connect all points with edge weights s_{ij}.

Note: σ^2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.
The fully connected graph: Connect all points with edge weights s_{ij}. For example, one could use the *Gaussian similarity function* to represent a local neighborhood relationships:

$$s_{ij} = s(x_i, x_j) = \exp\left(-\|x_i - x_j\|^2/(2\sigma^2)\right) \quad (\sigma^2 > 0).$$

Note: σ^2 controls the width of the neighborhoods.
The fully connected graph: Connect all points with edge weights s_{ij}. For example, one could use the Gaussian similarity function to represent a local neighborhood relationships:

$$s_{ij} = s(x_i, x_j) = \exp(-\|x_i - x_j\|^2/(2\sigma^2)) \quad (\sigma^2 > 0).$$

Note: σ^2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.
There are three commonly used definitions of the graph Laplacian:

1. **The unnormalized Laplacian** is

 \[L := D - W. \]
There are three commonly used definitions of the graph Laplacian:

1. **The unnormalized Laplacian** is

 \[L := D - W. \]

2. **The normalized symmetric Laplacian** is

 \[L_{\text{sym}} := D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}. \]
There are three commonly used definitions of the graph Laplacian:

1. **The unnormalized Laplacian** is
 \[
 L := D - W.
 \]

2. **The normalized symmetric Laplacian** is
 \[
 L_{\text{sym}} := D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}.
 \]

3. **The normalized “random walk” Laplacian** is
 \[
 L_{\text{rw}} := D^{-1}L = I - D^{-1}W.
 \]
There are three commonly used definitions of the graph Laplacian:

1. **The unnormalized Laplacian** is
 \[
 L := D - W.
 \]

2. **The normalized symmetric Laplacian** is
 \[
 L_{\text{sym}} := D^{-1/2} LD^{-1/2} = I - D^{-1/2} WD^{-1/2}.
 \]

3. **The normalized “random walk” Laplacian** is
 \[
 L_{\text{rw}} := D^{-1} L = I - D^{-1} W.
 \]

We begin by studying properties of the **unnormalized Laplacian**.
Proposition: The matrix L satisfies the following properties:

1. For any $f \in \mathbb{R}^n$:
 $$f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

2. L is symmetric and positive semidefinite.

3. 0 is an eigenvalue of L with associated constant eigenvector 1.

Proof:
To prove (1),
$$f^T L f = f^T D f - f^T W f = \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} w_{ij} f_i f_j = \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} w_{ij} f_i f_j + \sum_{j=1}^{n} d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$ (2) follows from (1). (3) is easy.
The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:

1. For any $f \in \mathbb{R}^n$:

 $$f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$
Proposition: The matrix L satisfies the following properties:

1. For any $f \in \mathbb{R}^n$:
 \[
 f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.
 \]

2. L is symmetric and positive semidefinite.
Proposition: The matrix L satisfies the following properties:

1. For any $f \in \mathbb{R}^n$:
 \[f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2. \]

2. L is symmetric and positive semidefinite.
3. 0 is an eigenvalue of L with associated constant eigenvector $\mathbf{1}$.
Proposition: The matrix L satisfies the following properties:

1. For any $f \in \mathbb{R}^n$:

 $$f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

2. L is symmetric and positive semidefinite.
3. 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$.

Proof:
Proposition: The matrix L satisfies the following properties:

1. For any $f \in \mathbb{R}^n$:
 \[
 f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.
 \]

2. L is symmetric and positive semidefinite.

3. 0 is an eigenvalue of L with associated constant eigenvector $\mathbb{1}$.

Proof: To prove (1),

\[
\begin{align*}
 f^T L f &= f^T D f - f^T W f \\
 &= \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} w_{ij} f_i f_j \\
 &= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} w_{ij} f_i f_j + \sum_{j=1}^{n} d_j f_j^2 \right) \\
 &= \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.
\end{align*}
\]

(2) follows from (1). (3) is easy.
Proposition: Let G be an undirected graph with non-negative weights. Then:

1. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.
2. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $1_{A_1}, \ldots, 1_{A_k}$ of those components.

Proof: If f is an eigenvector associated to $\lambda = 0$, then

$$0 = f^T L f = \sum_{i,j} w_{ij} (f_i - f_j)^2.$$

It follows that $f_i = f_j$ whenever $w_{ij} > 0$. Thus f is constant on the connected components of G. We conclude that the eigenspace of 0 is contained in $\text{span}(1_{A_1}, \ldots, 1_{A_k})$. Conversely, it is not hard to see that each 1_{A_i} is an eigenvector associated to 0 (write L in block diagonal form).
Proposition: Let G be an undirected graph with non-negative weights. Then:

1. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.
Proposition: Let G be an undirected graph with non-negative weights. Then:

1. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.
2. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.
Proposition: Let G be an undirected graph with non-negative weights. Then:

1. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.

2. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

Proof:
Proposition: Let G be an undirected graph with non-negative weights. Then:

1. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.
2. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

Proof: If f is an eigenvector associate to $\lambda = 0$, then

$$0 = f^T L f = \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

It follows that $f_i = f_j$ whenever $w_{ij} > 0$. Thus f is constant on the connected components of G. We conclude that the eigenspace of 0 is contained in $\text{span}(\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k})$. Conversely, it is not hard to see that each $\mathbb{1}_{A_i}$ is an eigenvector associated to 0 (write L in block diagonal form). \[\square \]
Proposition: The normalized Laplacians satisfy the following properties:

1. For every $f \in \mathbb{R}^n$, we have
 \[f^T L_{\text{sym}} f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2. \]

2. λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ is an eigenvalue of L_{sym} with eigenvector $w = D^{1/2}u$.

3. λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigenproblem $Lu = \lambda Du$.

Proof: The proof of (1) is similar to the proof of the analogous result for the unnormalized Laplacian. (2) and (3) follow easily by using appropriate rescalings.
Proposition: Let G be an undirected graph with non-negative weights. Then:

1. The multiplicity k of the eigenvalue 0 of both L_{sym} and L_{rw} equals the number of connected components A_1, \ldots, A_k in the graph.

2. For L_{rw}, the eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_i}, i = 1, \ldots, k$.

3. For L_{sym}, the eigenspace of eigenvalue 0 is spanned by the vectors $D^{1/2} \mathbb{1}_{A_i}, i = 1, \ldots, k$.

Proof: Similar to the proof of the analogous result for the unnormalized Laplacian.