MATH 829: Introduction to Data Mining and Analysis

Independent component analysis

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 22, 2016
Motivation

- **Blind signal separation**: separation of a mixture of source signals, without (or with very little) information about the sources and the mixing process.
Motivation

- **Blind signal separation**: separation of a mixture of source signals, without (or with very little) information about the sources and the mixing process.
- **Example (the cocktail party problem)**: isolate a single conversation in a noisy room with many people talking.
Motivation

- **Blind signal separation**: separation of a mixture of source signals, without (or with very little) information about the sources and the mixing process.
- **Example (the cocktail party problem)**: isolate a single conversation in a noisy room with many people talking.
Mathematical formulation

We have

\[x(t) = A s(t), \quad t = 1, \ldots, T. \]

We observe \(x(t) \).

We don't know what \(A \) is (mixing matrix).

We don't observe \(s(t) \).

We want to recover \(s(t) \) (and/or \(A \)).

Current formulation is ill-posed: there are multiple ways of mixing signals to get the output.

We will seek a solution where the components of \(s \) are as independent as possible.

\[x_1(t) = a_{11} s_1(t) + a_{12} s_2(t) \]

\[x_2(t) = a_{21} s_1(t) + a_{22} s_2(t) \]
Mathematical formulation

We have

\[x(t) = As(t), \quad t = 1, \ldots, T. \]
Mathematical formulation

We have

\[x(t) = A s(t), \quad t = 1, \ldots, T. \]

We observe \(x(t) \).
Mathematical formulation

\[x_1(t) = a_{11}s_1(t) + a_{12}s_2(t) \]
\[x_2(t) = a_{21}s_1(t) + a_{22}s_2(t) \]

- We have \(x(t) = As(t), \ t = 1, \ldots, T \).
- We observe \(x(t) \).
- We don’t know what \(A \) is (mixing matrix).
Mathematical formulation

We have $x(t) = As(t), \ t = 1, \ldots, T$.

- We observe $x(t)$.
- We don’t know what A is (mixing matrix).
- We don’t observe $s(t)$.

\[
x_1(t) = a_{11}s_1(t) + a_{12}s_2(t) \\
x_2(t) = a_{21}s_1(t) + a_{22}s_2(t)
\]
Mathematical formulation

We have $x(t) = As(t)$, $t = 1, \ldots, T$.
We observe $x(t)$.
We don’t know what A is (mixing matrix).
We don’t observe $s(t)$.

We want to recover $s(t)$ (and/or A).
Mathematical formulation

We have

\[x(t) = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} s_1(t) \\ s_2(t) \end{pmatrix}, \quad t = 1, \ldots, T. \]

We observe \(x(t) \).

We don’t know what \(A \) is (mixing matrix).

We don’t observe \(s(t) \).

We want to recover \(s(t) \) (and/or \(A \)).

Current formulation is ill-posed: there are multiple ways of mixing signals to get the output.
Mathematical formulation

We have

\[x(t) = As(t), \quad t = 1, \ldots, T. \]

We observe \(x(t). \)

We don’t know what \(A \) is (mixing matrix).

We don’t observe \(s(t). \)

We want to recover \(s(t) \) (and/or \(A \)).

- Current formulation is ill-posed: there are multiple ways of mixing signals to get the output.
- We will seek a solution where the components of \(s \) are as independent as possible.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations:** we can always permute the s_i’s and the row/columns of A to obtain new solutions.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations**: we can always permute the s_i’s and the row/columns of A to obtain new solutions.

2. **Scaling**: we can always rescale the s_i’s and rescale the coefficients in A.

Problem with Gaussian data:

Suppose $s_i \sim N(0, I_{2 \times 2})$ (independent Gaussian sources).

Let $x = As$ where $A \in \mathbb{R}_{2 \times 2}$.

Then $x \sim N(0, AA^T)$.

Let U be an orthogonal matrix, i.e., $UU^T = U^TU = I$.

Let $A' = AU$.

Then $x' = A's \sim N(0, A'A'^T) = N(0, AA^T)$.

Thus, there is no way to statistically differentiate if x was obtained from the mixing matrix A or A'. We will therefore assume the sources are not Gaussian.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations**: we can always permute the s_i’s and the row/columns of A to obtain new solutions.

2. **Scaling**: we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.)
Assumptions

Note: Signals can only be recovered up to

1. **Permutations:** we can always permute the s_i’s and the row/columns of A to obtain new solutions.

2. **Scaling:** we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?
Assumptions

Note: Signals can only be recovered up to

1. **Permutations**: we can always permute the s_i's and the row/columns of A to obtain new solutions.

2. **Scaling**: we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N(0_{2 \times 1}, I_{2 \times 2})$ (independent Gaussian sources).
Note: Signals can only be recovered up to

1. **Permutations**: we can always permute the s_i’s and the row/columns of A to obtain new solutions.

2. **Scaling**: we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N(0_{2 \times 1}, I_{2 \times 2})$ (independent Gaussian sources).
- Let $x = As$ where $A \in \mathbb{R}^{2 \times 2}$.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations:** we can always permute the s_i’s and the row/columns of A to obtain new solutions.

2. **Scaling:** we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N(0_{2 \times 1}, I_{2 \times 2})$ (independent Gaussian sources).
- Let $x = As$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N(0_{2 \times 1}, AA^T)$.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations**: we can always permute the s_i’s and the row/columns of A to obtain new solutions.

2. **Scaling**: we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N(0_{2 \times 1}, I_{2 \times 2})$ (independent Gaussian sources).
- Let $x = As$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N(0_{2 \times 1}, AA^T)$.
- Let U be an orthogonal matrix, i.e., $UU^T = U^TU = I$.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations:** we can always permute the s_i’s and the row/columns of A to obtain new solutions.

2. **Scaling:** we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N(0_{2 \times 1}, I_{2 \times 2})$ (independent Gaussian sources).
- Let $x = As$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N(0_{2 \times 1}, AA^T)$.
- Let U be an orthogonal matrix, i.e., $UU^T = U^TU = I$.
- Let $A' = AU$.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations**: we can always permute the s_i's and the row/columns of A to obtain new solutions.

2. **Scaling**: we can always rescale the s_i's and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N(0_{2 \times 1}, I_{2 \times 2})$ (independent Gaussian sources).
- Let $x = As$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N(0_{2 \times 1}, AA^T)$.
- Let U be an orthogonal matrix, i.e., $UU^T = U^TU = I$.
- Let $A' = AU$.
- Then $x' = A's \sim N(0_{2 \times 1}, A'A'^T) = N(0_{2 \times 1}, AUU^TA^T) = N(0_{2 \times 1}, AA^T)$.

Thus, there is no way to statistically distinguish if x was obtained from the mixing matrix A or A'.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations**: we can always permute the s_i's and the row/columns of A to obtain new solutions.

2. **Scaling**: we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N(0_{2 \times 1}, I_{2 \times 2})$ (independent Gaussian sources).
- Let $x = As$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N(0_{2 \times 1}, AA^T)$.
- Let U be an orthogonal matrix, i.e., $UU^T = U^TU = I$.
- Let $A' = AU$.
- Then $x' = A's \sim N(0_{2 \times 1}, A'A'^T) = N(0_{2 \times 1}, AUU^TA^T) = N(0_{2 \times 1}, AA^T)$.

Thus, there is no way to statistically differentiate if x was obtained from the mixing matrix A or A'.
Assumptions

Note: Signals can only be recovered up to

1. **Permutations**: we can always permute the s_i’s and the row/columns of A to obtain new solutions.
2. **Scaling**: we can always rescale the s_i’s and rescale the coefficients in A.

(Not a big deal in most applications.) Other problems?

Problem with Gaussian data:

- Suppose $s \sim N(\mathbf{0}_{2 \times 1}, I_{2 \times 2})$ (independent Gaussian sources).
- Let $x = As$ where $A \in \mathbb{R}^{2 \times 2}$.
- Then $x \sim N(\mathbf{0}_{2 \times 1}, AA^T)$.
- Let U be an orthogonal matrix, i.e., $UU^T = U^TU = I$.
- Let $A' = AU$.
- Then $x' = A's \sim N(\mathbf{0}_{2 \times 1}, A'A'^T) = N(\mathbf{0}_{2 \times 1}, AUU^T A^T) = N(\mathbf{0}_{2 \times 1}, AA^T)$.

Thus, there is no way to statistically differentiate if x was obtained from the mixing matrix A or A'.

We will therefore assume the sources are **not** Gaussian.
Independence of the sources

- We seek sources that are as independent as possible.
Independence of the sources

- We seek sources that are *as independent as possible*.
- Multiple ways to *measure* independence. For example:
 1. Minimization of mutual information.
 2. Maximization of non-Gaussianity measures (negentropy, kurtosis, etc.).

Motivation for (2) comes from the central limit theorem: a sum of independent random variables should be more Gaussian.
Independence of the sources

- We seek sources that are as independent as possible.
- Multiple ways to measure independence. For example:
 1. Minimization of mutual information.
Independence of the sources

- We seek sources that are *as independent as possible*.
- Multiple ways to *measure* independence. For example:
 1. Minimization of mutual information.
 2. Maximization of non-Gaussianity measures (negentropy, kurtosis, etc.).

Motivation for (2) comes from the central limit theorem: a sum of independent random variables should be more Gaussian.
Independence of the sources

- We seek sources that are \textit{as independent as possible}.
- Multiple ways to \textit{measure} independence. For example:
 1. Minimization of mutual information.
 2. Maximization of non-Gaussianity measures (negentropy, kurtosis, etc.).

Motivation for (2) comes from the central limit theorem: a sum of independent random variables should be “more Gaussian”.
Independence of the sources

- We seek sources that are *as independent as possible*.
- Multiple ways to *measure* independence. For example:
 1. Minimization of mutual information.
 2. Maximization of non-Gaussianity measures (negentropy, kurtosis, etc.).

Motivation for (2) comes from the central limit theorem: a sum of independent random variables should be “more Gaussian”.

To explain the above notions, we briefly discuss some concepts from *information theory*.
Entropy of a random variable

Let X be a random variable taking values x_1, \ldots, x_N with probabilities $P(X = x_i) = p_i$.
Entropy of a random variable

- Let X be a random variable taking values x_1, \ldots, x_N with probabilities $P(X = x_i) = p_i$.
- The *entropy* of X is given by:

$$H(X) = E(-\log p) = -\sum_{i=1}^{N} p_i \log p_i.$$

(usually, we take the log in base 2).
Entropy of a random variable

- Let X be a random variable taking values x_1, \ldots, x_N with probabilities $P(X = x_i) = p_i$.
- The entropy of X is given by:

$$H(X) = E(- \log p) = - \sum_{i=1}^{N} p_i \log p_i.$$

(usually, we take the log in base 2).
- Similarly, if X is a continuous random variable with density $f(x)$, we define:

$$H(X) = - \int f(x) \log f(x) \, dx$$
Entropy of a random variable

- Let X be a random variable taking values x_1, \ldots, x_N with probabilities $P(X = x_i) = p_i$.
- The entropy of X is given by:

$$H(X) = E(- \log p) = - \sum_{i=1}^{N} p_i \log p_i.$$

(usually, we take the log in base 2).
- Similarly, if X is a continuous random variable with density $f(x)$, we define:

$$H(X) = - \int f(x) \log f(x) \, dx$$

The entropy is a measure of the uncertainty or complexity of a random variable.
Entropy of a random variable

- Let X be a random variable taking values x_1, \ldots, x_N with probabilities $P(X = x_i) = p_i$.
- The entropy of X is given by:

$$H(X) = E(- \log p) = - \sum_{i=1}^{N} p_i \log p_i.$$

(usually, we take the log in base 2).

- Similarly, if X is a continuous random variable with density $f(x)$, we define:

$$H(X) = - \int f(x) \log f(x) \, dx$$

The entropy is a measure of the uncertainty or complexity of a random variable.

Example: If X is a (discrete) uniform on $\{1, \ldots, N\}$, then

$$H(X) = - \sum_{i=1}^{N} \frac{1}{N} \log \left(\frac{1}{N} \right) = \log N.$$
Example: \(X \sim \text{Bernoulli}(p) \), i.e., \(P(X = 1) = p \), \(P(X = 0) = 1 - p \). The more “uncertain” the outcome is, the larger the entropy.
We would like to define a measure of \textit{information} $I(p)$ of an event occurring with probability p. This function should satisfy:

1. $I(p) \geq 0$.
2. $I(1) = 0$ (the information gained from observing a certain event is 0).
3. $I(p_1 p_2) = I(p_1) + I(p_2)$ (information gained from observing two independent events is the sum of information).
4. I should be continuous and monotonic.

The above properties imply $I(p) = \log_b p$ for some base b. The entropy of X is the average information contained in X:

$$H(X) = \sum_{i=1}^{N} I(p_i) p_i.$$
Entropy and information

We would like to define a measure of information $I(p)$ of an event occurring with probability p. This function should satisfy:

- $I(p) \geq 0$.
- $I(1) = 0$ (the information gained from observing a certain event is 0).
- $I(p_1p_2) = I(p_1) + I(p_2)$ (information gained from observing two independent events is the sum of information).
- I should be continuous and monotonic.
Entropy and information

We would like to define a measure of *information* $I(p)$ of an event occurring with probability p. This function should satisfy:

- $I(p) \geq 0$.
- $I(1) = 0$ (the information gained from observing a certain event is 0).
- $I(p_1 p_2) = I(p_1) + I(p_2)$ (information gained from observing two independent events is sum of information).
- I should be continuous and monotonic.

The above properties imply $I(p) = \log_b \frac{1}{p}$ for some base b.

We would like to define a measure of information $I(p)$ of an event occurring with probability p. This function should satisfy:

- $I(p) \geq 0$.
- $I(1) = 0$ (the information gained from observing a certain event is 0).
- $I(p_1 p_2) = I(p_1) + I(p_2)$ (information gained from observing two independent events is the sum of information).
- I should be continuous and monotonic.

The above properties imply $I(p) = \log_b \frac{1}{p}$ for some base b.

The entropy of X is the average information “contained” in X:

$$H(X) = \sum_{i=1}^{N} I(p_i)p_i.$$
Suppose we can only transmit 0s and 1s.
We need to encode our message (e.g. choose a code for each letter).
How efficiently can we encode the message?
Suppose we can only transmit 0s and 1s.

We need to encode our message (e.g. choose a code for each letter).

How efficiently can we encore the message?

Example:

Our source sends the letters A, B, C, D. Each letter is equally likely to be transmitted.

- A → 00
- C → 10
- B → 01
- D → 11

We send on average (actually, exactly!) 2 bits per symbol.

If the symbols are not equally likely, it is not hard to see that one can do better (i.e., send less bits per symbol on average).

The entropy provides a lower bound on the average number of bits required per symbol.
Entropy and communication

- Suppose we can only transmit 0s and 1s.
- We need to encode our message (e.g. choose a code for each letter).
- How efficiently can we encode the message?

Example: Our source sends the letters A, B, C, D. Each letter is equally likely to be transmitted.

$$
A \rightarrow 00 \quad C \rightarrow 10 \\
B \rightarrow 01 \quad D \rightarrow 11
$$

We send on average (actually, exactly!) 2 bits per symbol.
Suppose we can only transmit 0s and 1s.

We need to encode our message (e.g., choose a code for each letter).

How efficiently can we encode the message?

Example: Our source sends the letters A, B, C, D. Each letter is equally likely to be transmitted.

- $A \rightarrow 00$
- $C \rightarrow 10$
- $B \rightarrow 01$
- $D \rightarrow 11$

We send on average (actually, exactly!) 2 bits per symbol.

If the symbols are not equally likely, it is not hard to see that one can do better (i.e., send less bits per symbol on average).
Suppose we can only transmit 0s and 1s.
We need to encode our message (e.g. choose a code for each letter).
How efficiently can we encode the message?

Example: Our source sends the letters A, B, C, D. Each letter is equally likely to be transmitted.

- $A \rightarrow 00$
- $B \rightarrow 01$
- $C \rightarrow 10$
- $D \rightarrow 11$

We send on average (actually, exactly!) 2 bits per symbol.

If the symbols are not equally likely, it is not hard to see that one can do better (i.e., send less bits per symbol on average).

The entropy provides a lower bound on the average number of bits required per symbol.
Given two (discrete) probability distributions P and Q, we define the *Kullback–Leibler divergence* by

$$D_{KL}(P||Q) := \sum_i P(i) \log \frac{P(i)}{Q(i)}.$$
Kullback–Leibler divergence

Given two (discrete) probability distributions P and Q, we define
the Kullback–Leibler divergence by

$$D_{KL}(P||Q) := \sum_i P(i) \log \frac{P(i)}{Q(i)}.$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$D_{KL}(P||Q) := \int p(x) \log \frac{p(x)}{q(x)} \, dx.$$
Kullback–Leibler divergence

Given two (discrete) probability distributions P and Q, we define the Kullback–Leibler divergence by

$$D_{KL}(P||Q) := \sum_i P(i) \log \frac{P(i)}{Q(i)}.$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$D_{KL}(P||Q) := \int p(x) \log \frac{p(x)}{q(x)} \, dx.$$

Intuitive interpretation:
- A source send symbols with distribution P.
Kullback–Leibler divergence

Given two (discrete) probability distributions P and Q, we define the Kullback–Leibler divergence by

$$D_{KL}(P||Q) := \sum_{i} P(i) \log \frac{P(i)}{Q(i)}.$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$D_{KL}(P||Q) := \int p(x) \log \frac{p(x)}{q(x)} \, dx.$$

Intuitive interpretation:

- A source send symbols with distribution P.
- We encode the messages as if the source had distribution Q.
Kullback–Leibler divergence

Given two (discrete) probability distributions P and Q, we define the *Kullback–Leibler divergence* by

$$D_{KL}(P||Q) := \sum_i P(i) \log \frac{P(i)}{Q(i)}.$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$D_{KL}(P||Q) := \int p(x) \log \frac{p(x)}{q(x)} \, dx.$$

Intuitive interpretation:
- A source send symbols with distribution P.
- We encode the messages as if the source had distribution Q.
- $D_{KL}(P||Q)$ is the number of supplementary bits per symbol that we send for not using the “right” distribution.
Kullback–Leibler divergence

Given two (discrete) probability distributions P and Q, we define the *Kullback–Leibler divergence* by

$$D_{KL}(P||Q) := \sum_i P(i) \log \frac{P(i)}{Q(i)}.$$

Similarly, when P and Q are continuous with densities $p(x)$ and $q(x)$ respectively, we define

$$D_{KL}(P||Q) := \int p(x) \log \frac{p(x)}{q(x)} \, dx.$$

Intuitive interpretation:
- A source send symbols with distribution P.
- We encode the messages as if the source had distribution Q.
- $D_{KL}(P||Q)$ is the number of supplementary bits per symbol that we send for not using the “right” distribution.

The KL divergence is used as a measure of distance between distributions (note however that $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ in general).
Mutual information

\((X_1, \ldots, X_n) \) random vector with distribution \(p(x_1, \ldots, x_n) \).
Mutual information

- \((X_1, \ldots, X_n)\) random vector with distribution \(p(x_1, \ldots, x_n)\).
- Let \(p(x_1), \ldots, p(x_n)\) denote the marginals of \(p\) (i.e., the distribution of each variable \(X_i\)).
Mutual information

- \((X_1, \ldots, X_n)\) random vector with distribution \(p(x_1, \ldots, x_n)\).
- Let \(p(x_1), \ldots, p(x_n)\) denote the marginals of \(p\) (i.e., the distribution of each variable \(X_i\)).
- Let \((Y_1, \ldots, Y_n)\) have distribution \(p(x_1)p(x_2) \ldots p(x_n)\) (so \(Y_i\) has the same distribution as \(X_i\), but the \(Y_i\)s are independent).
Mutual information

- \((X_1, \ldots, X_n)\) random vector with distribution \(p(x_1, \ldots, x_n)\).
- Let \(p(x_1), \ldots, p(x_n)\) denote the marginals of \(p\) (i.e., the distribution of each variable \(X_i\)).
- Let \((Y_1, \ldots, Y_n)\) have distribution \(p(x_1)p(x_2) \ldots p(x_n)\) (so \(Y_i\) has the same distribution as \(X_i\), but the \(Y_i\)s are independent).

The **mutual information** of \((X_1, \ldots, X_n)\) is given by

\[
I(X_1, \ldots, X_n) = D_{KL}(p(x_1, \ldots, x_n) \| p(x_1) \ldots p(x_n)).
\]

- We have \(I(X, Y) = 0\) if and only if \(X, Y\) are independent.
\((X_1, \ldots, X_n) \) random vector with distribution \(p(x_1, \ldots, x_n) \).

Let \(p(x_1), \ldots, p(x_n) \) denote the marginals of \(p \) (i.e., the distribution of each variable \(X_i \)).

Let \((Y_1, \ldots, Y_n) \) have distribution \(p(x_1)p(x_2)\ldots p(x_n) \) (so \(Y_i \) has the same distribution as \(X_i \), but the \(Y_i \)'s are independent).

The \textit{mutual information} of \((X_1, \ldots, X_n) \) is given by

\[
I(X_1, \ldots, X_n) = D_{KL}(p(x_1, \ldots, x_n) || p(x_1) \ldots p(x_n)).
\]

We have \(I(X, Y) = 0 \) if and only if \(X, Y \) are independent.

Therefore, \(I(X_1, \ldots, X_n) \) provides a numerical measure of how independent random variables are.
The kurtosis (from greek κυρτός, “curved”) of a random variable with mean $\mu = E(X)$ is given by

$$\text{Kurt}(X) := \frac{E[(X - \mu)^4]}{(E[(X - \mu)^2])^2}.$$
The kurtosis (from greek κυρτός, “curved”) of a random variable with mean \(\mu = E(X) \) is given by

\[
Kurt(X) := \frac{E[(X - \mu)^4]}{(E[(X - \mu)^2])^2}.
\]

Measures the “propensity to produce outliers”.
The kurtosis (from greek κυρτός, “curved”) of a random variable with mean $\mu = E(X)$ is given by

$$\text{Kurt}(X) := \frac{E[(X - \mu)^4]}{(E[(X - \mu)^2])^2}.$$

Measures the “propensity to produce outliers”.

The Gaussian distribution has kurtosis equal to 3.
The **kurtosis** (from greek κυρτός, “curved”) of a random variable with mean $\mu = E(X)$ is given by

$$\text{Kurt}(X) := \frac{E[(X - \mu)^4]}{(E[(X - \mu)^2])^2}.$$

- Measures the “propensity to produce outliers”.
- The Gaussian distribution has kurtosis equal to 3.
- Can thus use the “excess kurtosis” $\text{Kurt}(X) - 3$ to test for “non-Gaussianity.”
Measures of non-Gaussianity

- The **kurtosis** (from greek κυρτός, “curved”) of a random variable with mean $\mu = E(X)$ is given by

$$ \text{Kurt}(X) := \frac{E[(X - \mu)^4]}{(E[(X - \mu)^2])^2}. $$

- Measures the “propensity to produce outliers”.
- The Gaussian distribution has kurtosis equal to 3.
- Can thus use the “excess kurtosis” $\text{Kurt}(X) - 3$ to test for “non-Gaussianity”.

- The **negentropy** of a random variable X is given by

$$ J(X) := H(X_{\text{gauss}}) - H(X), $$

where X_{gauss} is a Gaussian random variable with the same mean and variance as X.

Motivated by the fact that the Gaussian distribution has the largest entropy among all continuous distributions with a given mean and variance. Therefore, a variable that is far from a Gaussian should have a larger negentropy.
Measures of non-Gaussianity

- **The kurtosis** (from Greek κυρτός, “curved”) of a random variable with mean $\mu = E(X)$ is given by

$$\text{Kurt}(X) := \frac{E[(X - \mu)^4]}{(E[(X - \mu)^2])^2}.$$

- Measures the “propensity to produce outliers”.
- The Gaussian distribution has kurtosis equal to 3.
- Can thus use the “excess kurtosis” $\text{Kurt}(X) - 3$ to test for “non-Gaussianity”.

- **The negentropy** of a random variable X is given by

$$J(X) := H(X_{\text{gauss}}) - H(X),$$

where X_{gauss} is a Gaussian random variable with the same mean and variance as X.

- Motivated by the fact that the Gaussian distribution has the largest entropy among all continuous distributions with a given mean and variance.
Measures of non-Gaussianity

- The **kurtosis** (from greek κυρτός, “curved”) of a random variable with mean $\mu = E(X)$ is given by

$$\text{Kurt}(X) := \frac{E[(X - \mu)^4]}{(E[(X - \mu)^2])^2}.$$

- Measures the “propensity to produce outliers”.
- The Gaussian distribution has kurtosis equal to 3.
- Can thus use the “excess kurtosis” $\text{Kurt}(X) - 3$ to test for “non-Gaussianity”.

- The **negentropy** of a random variable X is given by

$$J(X) := H(X_{\text{gauss}}) - H(X),$$

where X_{gauss} is a Gaussian random variable with the same mean and variance as X.

- Motivated by the fact that the Gaussian distribution has the largest entropy among all continuous distributions with a given mean and variance.
- Therefore, a variable that is “far from a Gaussian” should have a larger negentropy.
FastICA (Hyvärinen, 1999) is an efficient and popular algorithm for computing independent components.
FastICA (Hyvärinen, 1999) is an efficient and popular algorithm for computing independent components.

Finds linear combinations maximizing an approximation of the negentropy.

\[J(X) \approx \left[E(G(X)) - E(G(x_{gauss})) \right]^2, \]
where \(G(x) = \log \cosh(x) \).
FastICA (Hyvärinen, 1999) is an efficient and popular algorithm for computing independent components.

- Finds linear combinations maximizing an approximation of the negentropy.
- The negentropy is replaced by the approximation

\[J(X) \approx \left[E(G(X)) - E(G(X_{gauss})) \right]^2, \]

where \(G(x) = \log \cosh(x) \).
Before the FastICA algorithm is applied, the data needs to be prewhitened.
Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.
Whitening the data

Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.
- First *center* the rows of X:

 $$x_{ij} \leftarrow x_{ij} - \frac{1}{M} \sum_{k} x_{ik}.$$
Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.
- First center the rows of X:
 \[
 x_{ij} \leftarrow x_{ij} - \frac{1}{M} \sum_{k} x_{ik}.
 \]

- Next, we want the linearly transform the rows of X so that they become uncorrelated. We seek a linear transformation $L : \mathbb{R}^{N \times M} \to \mathbb{R}^{N \times M}$ such that
 \[
 \frac{1}{M} L(x)L(x)^T = I_{N \times N}.
 \]
Whitening the data

Before the FastICA algorithm is applied, the data needs to be prewhitened.

- Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.
- First center the rows of X:

 $$x_{ij} \leftarrow x_{ij} - \frac{1}{M} \sum_k x_{ik}.$$

- Next, we want the linearly transform the rows of X so that they become uncorrelated. We seek a linear transformation $L : \mathbb{R}^{N \times M} \rightarrow \mathbb{R}^{N \times M}$ such that

 $$\frac{1}{M} L(x) L(x)^T = I_{N \times N}.$$

This is easily achieved using the eigendecomposition of the covariance matrix of the centered data X:

$$\frac{1}{M} XX^T = U D U^T.$$
Before the FastICA algorithm is applied, the data needs to be prewhitened.

Let $X \in \mathbb{R}^{N \times M}$ be the data matrix.

First, center the rows of X:

$$x_{ij} \leftarrow x_{ij} - \frac{1}{M} \sum_k x_{ik}.$$

Next, we want the linearly transform the rows of X so that they become uncorrelated. We seek a linear transformation $L : \mathbb{R}^{N \times M} \rightarrow \mathbb{R}^{N \times M}$ such that

$$\frac{1}{M} L(x) L(x)^T = I_{N \times N}.$$

This is easily achieved using the eigendecomposition of the covariance matrix of the centered data X:

$$\frac{1}{M} XX^T = UDU^T.$$

Define the whitened data matrix by

$$X_{\text{white}} := UD^{-1/2}U^T X.$$
The FastICA algorithm

We want to extract independent components of the form $w^T X$ where $w \in \mathbb{R}^N$.
We want to extract independent components of the form $w^T X$ where $w \in \mathbb{R}^N$.

The FastICA algorithm:

- Find a first direction w_1 maximizing the (approximation of) the negentropy (can use a fixed point method).
- Estimate a second direction $w_2 \perp w_1$ maximizing the (approximation of) the negentropy.
- etc..
We mix two sound files, and recover them using ICA.

```python
import scipy.io.wavfile
import numpy as np

rate, data1 = scipy.io.wavfile.read('daft-punk.wav')
rate2, data2 = scipy.io.wavfile.read('weather.wav')

mix1 = np.int16(0.3*data1+0.5*data2)
mix2 = np.int16(0.2*data1+0.4*data2)

scipy.io.wavfile.write('./out/mix1.wav',rate,mix1)
s scipy.io.wavfile.write('./out/mix2.wav',rate,mix2)

from sklearn.decomposition import FastICA
ica = FastICA(n_components = 2)
X = np.vstack([mix1,mix2]).T
S_ = ica.fit_transform(X)
A_ = ica.mixing_

# Rescale components to have approximately the same mean amplitude as the first mixed signal
m = abs(mix1).mean()
m1 = abs(S_[:,0]).mean()
m2 = abs(S_[:,1]).mean()
S1 = np.int16(S_[:,0]*m/m1)
S2 = np.int16(S_[:,1]*m/m2)

scipy.io.wavfile.write('./out/estimated_source1.wav',rate,S1)
s scipy.io.wavfile.write('./out/estimated_source2.wav',rate,S2)
```