Transforming data

- Very often the relationship between variables is not linear.
- We saw before that transformations of the features can be used.
- If $h_m : \mathbb{R}^p \rightarrow \mathbb{R}$, then we can use the model

\[
 f(X) = \sum_{m=1}^{M} \beta_m h_m(X).
\]
Transforming data

- Very often the relationship between variables is not linear.
- We saw before that transformations of the features can be used.
- If $h_m : \mathbb{R}^p \rightarrow \mathbb{R}$, then we can use the model

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X).$$

Common transformations:

1. $h_m(X) = X_m$ (Usual linear regression).
2. $h_m(X) = X_j^2$ or $h_m(X) = X_j X_k$ (Taylor polynomials).
3. $h_m(X) = \log(X_j), \sqrt{X_j}$.
4. $h_m(X) = I(L_m \leq X_k < U_m)$ (Indicator functions in some intervals).
Transforming data

- Very often the relationship between variables is not linear.
- We saw before that transformations of the features can be used.
- If $h_m : \mathbb{R}^p \rightarrow \mathbb{R}$, then we can use the model

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X).$$

Common transformations:
1. $h_m(X) = X_m$ (Usual linear regression).
2. $h_m(X) = X_j^2$ or $h_m(X) = X_j X_k$ (Taylor polynomials).
3. $h_m(X) = \log(X_j), \sqrt{X_j}$.
4. $h_m(X) = I(L_m \leq X_k < U_m)$ (Indicator functions in some intervals).

Note:
- Need a large sample size to include many functions.
- Risk of over-fitting when including too many functions.
Splines

Splines are piecewise polynomials with a given number of continuous derivatives.

For example, *cubic* splines are degree 3 polynomials pasted together to get 2 continuous derivatives.
More generally, given knots $t_0 < t_1 < \cdots < t_k$, a spline of degree n is a piecewise polynomial

$$S(x) := \begin{cases}
S_0(x) & t_0 \leq x \leq t_1 \\
S_1(x) & t_1 \leq x \leq t_2 \\
\vdots \\
S_{k-1}(x) & t_{k-1} \leq x \leq t_k
\end{cases}$$

such that
More generally, given knots $t_0 < t_1 < \cdots < t_k$, a spline of degree n is a piecewise polynomial

\[
S(x) := \begin{cases}
S_0(x) & t_0 \leq x \leq t_1 \\
S_1(x) & t_1 \leq x \leq t_2 \\
\vdots \\
S_{k-1}(x) & t_{k-1} \leq x \leq t_k
\end{cases}
\]

such that

1. $S_i(x)$ is a polynomial of degree n.
2. $S(x)$ is $n - 1$ times continuously differentiable.
More generally, given knots $t_0 < t_1 < \cdots < t_k$, a spline of degree n is a piecewise polynomial

$$S(x) := \begin{cases}
S_0(x) & t_0 \leq x \leq t_1 \\
S_1(x) & t_1 \leq x \leq t_2 \\
& \vdots \\
S_{k-1}(x) & t_{k-1} \leq x \leq t_k
\end{cases}$$

such that

1. $S_i(x)$ is a polynomial of degree n.
2. $S(x)$ is $n - 1$ times continuously differentiable.

- Most commonly used value is $n = 3$ (cubic splines).
- Said to be the smallest n for which it is impossible to detect the location of the knots by eye.
More generally, given knots $t_0 < t_1 < \cdots < t_k$, a spline of degree n is a piecewise polynomial

$$S(x) := \begin{cases} S_0(x) & t_0 \leq x \leq t_1 \\ S_1(x) & t_1 \leq x \leq t_2 \\ \vdots \\ S_{k-1}(x) & t_{k-1} \leq x \leq t_k \end{cases}$$

such that

1. $S_i(x)$ is a polynomial of degree n.
2. $S(x)$ is $n - 1$ times continuously differentiable.

Most commonly used value is $n = 3$ (cubic splines).

- Said to be the smallest n for which it is impossible to detect the location of the knots by eye.
- A natural cubic spline imposes the supplementary conditions that the spline is linear beyond the boundary knots.
Basis for cubic splines

Cubic splines basis: With 2 knots ξ_1, ξ_2:

\[
\begin{align*}
 h_1(X) &= 1, & h_3(X) &= X^2, & h_5(X) &= (X - \xi_1)_+^3, \\
 h_2(X) &= X, & h_4(X) &= X^3, & h_6(X) &= (X - \xi_2)_+^3.
\end{align*}
\]
Cubic splines basis: With 2 knots ξ_1, ξ_2:

\[
\begin{align*}
h_1(X) &= 1, & h_3(X) &= X^2, & h_5(X) &= (X - \xi_1)^3, \\h_2(X) &= X, & h_4(X) &= X^3, & h_6(X) &= (X - \xi_2)^3.
\end{align*}
\]

More generally, with M knots, add $(X - \xi_3)^3, \ldots, (X - \xi_M)^3$.

Can include spline basis in linear regression. Not always obvious how to choose the knots. Natural splines can be used to avoid the erratic behavior of polynomials beyond the knots.
Cubic splines basis: With 2 knots ξ_1, ξ_2:

\[
\begin{align*}
 h_1(X) &= 1, \\
 h_3(X) &= X^2, \\
 h_5(X) &= (X - \xi_1)_+, \\
 h_2(X) &= X, \\
 h_4(X) &= X^3, \\
 h_6(X) &= (X - \xi_2)_+.
\end{align*}
\]

More generally, with M knots, add $(X - \xi_3)_+, \ldots, (X - \xi_M)_+$.

Natural cubic splines basis: With M knots

\[
\begin{align*}
 N_1(X) &= 1, \\
 N_2(X) &= X, \\
 N_{k+2}(X) &= d_k(X) - d_{M-1}(x),
\end{align*}
\]

where

\[
d_k(X) = \frac{(X - \xi_k)_+ - (X - \xi_M)_+}{\xi_M - \xi_k}.
\]
Basis for cubic splines

Cubic splines basis: With 2 knots ξ_1, ξ_2:

\[
\begin{align*}
 h_1(X) &= 1, & h_3(X) &= X^2, & h_5(X) &= (X - \xi_1)^3, \\
 h_2(X) &= X, & h_4(X) &= X^3, & h_6(X) &= (X - \xi_2)^3.
\end{align*}
\]

More generally, with M knots, add $(X - \xi_3)^3, \ldots, (X - \xi_M)^3$.

Natural cubic splines basis: With M knots

\[
\begin{align*}
 N_1(X) &= 1, & N_2(X) &= X, & N_{k+2}(X) &= d_k(X) - d_{M-1}(x),
\end{align*}
\]

where

\[
d_k(X) = \frac{(X - \xi_k)^3_+ - (X - \xi_M)^3_+}{\xi_M - \xi_k}.
\]

- Can include spline basis in linear regression.
- Not always obvious how to choose the knots.
- Natural splines can be used to avoid the erratic behavior of polynomials beyond the knots.
Example: Phoneme Recognition (ESL, Example 5.2.3)

15 examples each of the phonemes “aa” and “ao” sampled from a total of 695 “aa”s and 1022 “ao”s.

\[X = X(f) \]
\[f = \text{frequency}. \]

\[
\log \frac{P(aa|X)}{P(ao|X)} = \sum_{i=1}^{256} X(f_i)\beta_i = X^T \beta.
\]
Logistic regression coefficients, and smoothed version with natural cubic splines.

\[
\beta(f) = \sum_{i=1}^{M} h_m(f)\theta_m = H\theta,
\]

where \(H \) is a \(p \times M \) matrix of spline functions. Now, note that

\[
X^T \beta = X^T H\theta.
\]

Letting \(x^* = H^T x \), we can therefore fit the logistic regression on the smoothed inputs.
In the previous example, we fitted a logistic regression to transformed inputs.

Non-linear transformations are very useful for preprocessing data.

Powerful method for improving the performance of a learning algorithm.
Splines can be very useful.

Problem: How to choose the knots in an *optimal* way?

Smoothing splines avoid this problem.
Splines can be very useful.

Problem: How to choose the knots in an optimal way?

Smoothing splines avoid this problem.

Smoothing splines: Find a function \(f \in C^2 \) the minimizes

\[
\text{RSS}(f, \lambda) := \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(t)^2 \, dt \quad (\lambda > 0).
\]
Smothing splines

- Splines can be very useful.
- Problem: How to choose the knots in an *optimal* way?

Smoothing splines avoid this problem.

Smoothing splines: Find a function $f \in C^2$ that minimizes

$$\text{RSS}(f, \lambda) := \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(t)^2 \, dt \quad (\lambda > 0).$$

- First term controls closeness to data.
- Second term controls curvature of the function.

Note: If $\lambda = 0$: any function that interpolates the data works. As $\lambda = \infty$: least squares.
Splines can be very useful.

Problem: How to choose the knots in an optimal way?

Smoothing splines avoid this problem.

Smoothing splines: Find a function $f \in C^2$ that minimizes

$$\text{RSS}(f, \lambda) := \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(t)^2 \, dt \quad (\lambda > 0).$$

- First term controls closeness to data.
- Second term controls curvature of the function.

Note:
- If $\lambda = 0$: any function that interpolates the data works.
- As $\lambda = \infty$: least squares fit.
To compute a smoothing spline, we need to optimize on an infinite dimensional space of functions.
To compute a smoothing spline, we need to optimize on an infinite dimensional space of functions.

Remarkably, it can be shown that the problem has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline with knots at the unique values of the x_i, $i = 1, \ldots, N$. (See next homework).
To compute a smoothing spline, we need to optimize on an infinite dimensional space of functions.

Remarkably, it can be shown that the problem has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline with knots at the unique values of the x_i, $i = 1, \ldots, N$. (See next homework).

The penalty term translates to a penalty on the spline coefficients, which are shrunk some of the way toward the linear fit.
Nonparametric logistic regression

Consider the logistic regression problem with a binary output.

$$\log \frac{P(Y = 1|X = x)}{P(Y = 0|X = x)} = f(x).$$

Equivalently,

$$P(Y = 1|X = x) = \frac{e^{f(x)}}{1 + e^{f(x)}}.$$
Consider the logistic regression problem with a binary output.

\[
\log \left(\frac{P(Y = 1|X = x)}{P(Y = 0|X = x)} \right) = f(x).
\]

Equivalently,

\[
P(Y = 1|X = x) = \frac{e^{f(x)}}{1 + e^{f(x)}}.
\]

Before, we used a linear model for \(f \), and chose the coefficients using maximum likelihood.
Nonparametric logistic regression

Consider the logistic regression problem with a binary output.

\[
\log \frac{P(Y = 1|X = x)}{P(Y = 0|X = x)} = f(x).
\]

Equivalently,

\[
P(Y = 1|X = x) = \frac{e^{f(x)}}{1 + e^{f(x)}}.
\]

Before, we used a linear model for \(f \), and chose the coefficients using maximum likelihood.

Consider the \textit{penalized} log-likelihood criterion:

\[
l(f; \lambda) = \sum_{i=1}^{n} \left[y_i \log p(x_i) + (1 - y_i) \log(1 - p(x_i)) \right] - \frac{1}{2} \lambda \int f''(t) \, dt
\]

\[
= \sum_{i=1}^{n} \left[y_i f(x_i) - \log(1 + e^{f(x_i)}) \right] - \frac{1}{2} \lambda \int f''(t) \, dt.
\]

One can show that the optimal \(f \) is a natural spline with knots at the unique \(x_i \)s (see ESL for more details).