MATH 829: Introduction to Data Mining and Analysis
Support vector machines

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

March 11, 2016
Recall:

- A *hyperplane* H in $V = \mathbb{R}^n$ is a subspace of V of dimension $n - 1$ (i.e., a subspace of codimension 1).
- Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via

 $$H = \{ x \in \mathbb{R}^n : \beta^T x = 0 \} = \text{span}(\beta)^\perp.$$
Recall:

- A hyperplane H in $V = \mathbb{R}^n$ is a subspace of V of dimension $n - 1$ (i.e., a subspace of codimension 1).
- Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via
 \[H = \{ x \in \mathbb{R}^n : \beta^T x = 0 \} = \text{span}(\beta)^\perp. \]
- An affine hyperplane H in \mathbb{R}^n is a subset of the form
 \[H = \{ x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0 \} \]
 where $\beta_0 \in \mathbb{R}$, $\beta \in \mathbb{R}^n$.
Hyperplanes

Recall:

- A *hyperplane* H in $V = \mathbb{R}^n$ is a subspace of V of dimension $n - 1$ (i.e., a subspace of codimension 1).
- Each hyperplane is determined by a nonzero vector $\beta \in \mathbb{R}^n$ via
 \[
 H = \{ x \in \mathbb{R}^n : \beta^T x = 0 \} = \text{span}(\beta)^\perp.
 \]
- An *affine hyperplane* H in \mathbb{R}^n is a subset of the form
 \[
 H = \{ x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0 \}
 \]
 where $\beta_0 \in \mathbb{R}$, $\beta \in \mathbb{R}^n$.

- We often use the term “hyperplane” for “affine hyperplane”.

![Diagram showing a hyperplane and an affine hyperplane in \mathbb{R}^3. A hyperplane is a plane, and an affine hyperplane is a flat surface that passes through the origin. The diagram illustrates a vector β and a point x_0.](image)
Let

\[H = \{ x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0 \} . \]
Hyperplanes (cont.)

Let

$$H = \{ x \in \mathbb{R}^n : \beta_0 + \beta^T x = 0 \}.$$

Note that for $x_0, x_1 \in H$,

$$\beta^T (x_0 - x_1) = 0.$$

Thus β is perpendicular to H. It follows that for $x \in \mathbb{R}^n$,

$$d(x, H) = \frac{\beta^T}{\|\beta\|} (x - x_0) = \frac{\beta_0 + \beta^T x}{\|\beta\|}.$$
Separating hyperplane

Suppose we have binary data with labels \(\{+1, -1\} \). We want to separate data using an (affine) hyperplane.

ESL, Figure 4.14. (Orange = least-squares)
Suppose we have binary data with labels \(\{+1, -1\} \). We want to separate data using an (affine) hyperplane.

Classify using \(G(x) = \text{sgn}(x^T \beta + \beta_0) \).
Suppose we have binary data with labels \{+1, −1\}. We want to separate data using an (affine) hyperplane.

Classify using \(G(x) = \text{sgn}(x^T \beta + \beta_0) \).

- Separating hyperplane may not be unique.
- Separating hyperplane may not exist (i.e., data may not be separable).
Uniqueness problem: when the data is separable, choose the hyperplane to maximize the “margin” (the “no man’s land”).
Uniqueness problem: when the data is separable, choose the hyperplane to maximize the “margin” (the “no man’s land”).

Data: \((y_i, x_i) \in \{+1, -1\} \times \mathbb{R}^p\) \((i = 1, \ldots, n)\).

Suppose \(\beta_0 + \beta^T x\) is a separating hyperplane with \(\|\beta\| = 1\).
Uniqueness problem: when the data is separable, choose the hyperplane to maximize the “margin” (the “no man’s land”).

Data: \((y_i, x_i) \in \{+1, -1\} \times \mathbb{R}^p\) \((i = 1, \ldots, n)\).

Suppose \(\beta_0 + \beta^T x\) is a separating hyperplane with \(\|\beta\| = 1\).

Note that:

\[y_i(x_i^T \beta + \beta_0) > 0 \Rightarrow \text{Correct classification} \]

\[y_i(x_i^T \beta + \beta_0) < 0 \Rightarrow \text{Incorrect classification} \]
Uniqueness problem: when the data is separable, choose the hyperplane to maximize the "margin" (the "no man's land").

Data: \((y_i, x_i) \in \{+1, -1\} \times \mathbb{R}^p \quad (i = 1, \ldots, n)\).

Suppose \(\beta_0 + \beta^T x\) is a separating hyperplane with \(\|\beta\| = 1\).

Note that:

\[y_i(x_i^T \beta + \beta_0) > 0 \Rightarrow \text{Correct classification} \]
\[y_i(x_i^T \beta + \beta_0) < 0 \Rightarrow \text{Incorrect classification} \]

Also, \(\left| y_i(x_i^T \beta + \beta_0) \right| = \text{distance between } x \text{ and hyperplane (since } \|\beta\| = 1\).\)
Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\|=1} M$$

subject to $y_i(x_i^T \beta + \beta_0) \geq M \quad (i = 1, \ldots, n)$.
Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\| = 1} M$$

subject to

$$y_i(x_i^T \beta + \beta_0) \geq M \quad (i = 1, \ldots, n).$$

We will transform the problem into a usual form used in convex optimization.
Thus, if the data is separable, we can solve

\[
\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\|=1} M \\
\text{subject to } y_i (x_i^T \beta + \beta_0) \geq M \quad (i = 1, \ldots, n).
\]

We will transform the problem into a usual form used in convex optimization.
We can remove \(\|\beta\| = 1 \) by replacing the constraint by

\[
\frac{1}{\|\beta\|} y_i (x_i^T \beta + \beta_0) \geq M, \quad \text{or equivalently, } y_i (x_i^T \beta + \beta_0) \geq M \|\beta\|.
\]
Thus, if the data is separable, we can solve

$$\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\| = 1} M \beta_0$$

subject to $y_i (x_i^T \beta + \beta_0) \geq M$ \hspace{1cm} \(i = 1, \ldots, n\).

We will transform the problem into a usual form used in convex optimization.

We can remove $\|\beta\| = 1$ by replacing the constraint by

$$\frac{1}{\|\beta\|} y_i (x_i^T \beta + \beta_0) \geq M,$$ \hspace{1cm} or equivalently, \hspace{1cm} $y_i (x_i^T \beta + \beta_0) \geq M \|\beta\|.$

We can always rescale (β, β_0) so that $\|\beta\| = 1/M$. Our problem is therefore equivalent to

$$\min_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{2} \|\beta\|^2$$

subject to $y_i (x_i^T \beta + \beta_0) \geq 1$ \hspace{1cm} \(i = 1, \ldots, n\).
Thus, if the data is separable, we can solve
\[
\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\| = 1} M \\
\text{subject to } y_i(x_i^T \beta + \beta_0) \geq M \quad (i = 1, \ldots, n).
\]

We will transform the problem into a usual form used in convex optimization.

We can remove \(\|\beta\| = 1\) by replacing the constraint by
\[
\frac{1}{\|\beta\|} y_i(x_i^T \beta + \beta_0) \geq M, \quad \text{or equivalently,} \quad y_i(x_i^T \beta + \beta_0) \geq M \|\beta\|.
\]

We can always rescale \((\beta, \beta_0)\) so that \(\|\beta\| = 1/M\). Our problem is therefore equivalent to
\[
\min_{\beta_0, \beta \in \mathbb{R}^p} \frac{1}{2} \|\beta\|^2 \\
\text{subject to } y_i(x_i^T \beta + \beta_0) \geq 1 \quad (i = 1, \ldots, n).
\]

We now recognize the problem as a convex optimization problem with a quadratic objective, and linear inequality constraints.
The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?
Support vector machines

- The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error.

\[y_i (x_i^T \beta + \beta_0) \geq M (1 - \xi_i), \quad \xi_i \geq 0, \]

and add the constraint

\[\sum_{i=1}^{n} \xi_i \leq C \]

for some fixed constant \(C > 0 \).

The problem becomes:

\[\max_{\beta_0, \beta} \in \mathbb{R}^p, \| \beta \| = 1 \]

subject to

\[y_i (x_i^T \beta + \beta_0) \geq M (1 - \xi_i), \quad \xi_i \geq 0, \]

\[\sum_{i=1}^{n} \xi_i \leq C. \]
Support vector machines

- The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error. We replace \(y_i(x_i^T \beta + \beta_0) \geq M \) by

\[
y_i(x_i^T \beta + \beta_0) \geq M(1 - \xi_i), \quad \xi_i \geq 0,
\]

and add the constraint

\[
\sum_{i=1}^{n} \xi_i \leq C \quad \text{for some fixed constant } C > 0.
\]
Support vector machines

- The previous problem works well when the data is *separable*. What happens if there is no way to find a margin?
- We allow some points to be on the wrong side of the margin, but keep control on the error. We replace \(y_i (x_i^T \beta + \beta_0) \geq M \) by
 \[
y_i (x_i^T \beta + \beta_0) \geq M (1 - \xi_i), \quad \xi_i \geq 0,
 \]
 and add the constraint
 \[
 \sum_{i=1}^{n} \xi_i \leq C \quad \text{for some fixed constant } C > 0.
 \]

The problem becomes:

\[
\max_{\beta_0, \beta \in \mathbb{R}^p, \|\beta\|=1} M
\]

subject to \(y_i (x_i^T \beta + \beta_0) \geq M (1 - \xi_i) \)

\[
\xi_i \geq 0, \quad \sum_{i=1}^{n} \xi_i \leq C.
\]
As before, we can transform the problem into its “normal” form:

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} \| \beta \|^2 \\
\text{subject to} & \quad y_i (x_i^T \beta + \beta_0) \geq 1 - \xi_i \\
\xi_i & \geq 0, \quad \sum_{i=1}^{n} \xi_i \leq C.
\end{align*}
\]

Problem can be solved using standard optimization packages.
The SVM is a binary classifier. How can we classify data with \(K > 2 \) classes?
The SVM is a binary classifier. How can we classify data with $K > 2$ classes?

- **One versus all:** (or one versus the rest) Fit the model to separate each class against the remaining classes. Label a new point x according to the model for which $x^T \beta + \beta_0$ is the largest.

Need to fit the model K times.
One versus one:

1. Train a classifier for each possible pair of classes.
 Note: There are \(\binom{K}{2} = \frac{K(K-1)}{2} \) such pairs.
2. Classify a new point according to a majority vote: count the number of times the new point is assigned to a given class, and pick the class with the largest number.
Multiple classes of data (cont.)

- **One versus one:**
 1. Train a classifier for each possible pair of classes.
 Note: There are \(\binom{K}{2} = \frac{K(K-1)}{2} \) such pairs.
 2. Classify a new points according to a **majority vote**: count the number of times the new point is assign to a given class, and pick the class with the largest number.

Need to fit the model \(\binom{K}{2} \) times (computationally intensive).