Markov chains

- Let $S := \{s_1, s_2, \ldots \}$ be a countable set.
- A (discrete time) Markov chain is a discrete stochastic process $\{X_n : n = 0, 1, \ldots \}$ such that
 - X_n is an S-valued random variable $\forall n \geq 0$.
 - (Markov Property) For all $i, j, i_0, \ldots, i_{n-1} \in S$, and all $n \geq 0$:
 $$ P(X_{n+1} = j | X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i). $$

Interpretation: Given the present X_n, the future X_{n+1} is independent of the past (X_0, \ldots, X_{n-1}).

- The elements of S are called the states of the Markov chain.
- When $X_n = j$, we say that the process is in state j at time n.

Stationarity and transition probabilities

- A Markov chain is homogeneous (or stationary) if for all $n \geq 0$ and all $i, j \in S$,
 $$ P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i) =: p(i, j). $$

In other words, the transition probabilities do not depend on time.
- We will only consider homogeneous chains in what follows.
- We denote by $P := (p(i, j))_{i,j \in S}$ the transition matrix of the chain.
- Note: P is a stochastic matrix, i.e.,
 $$ \forall i, j \in S, \; p(i, j) \geq 0, \quad \text{and} \quad \forall i \in S, \; \sum_{j \in S} p(i, j) = 1. $$

- Conversely, every stochastic matrix is the transition matrix of some homogeneous discrete time Markov chain.

Examples

- **Example 1:** (Two-state Markov chain)
 $$ S = \{0, 1\}, \quad p(0, 1) = a, \quad p(1, 0) = b, \quad a, b \in [0, 1] $$
 $$ P = \begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}. $$

We naturally represent P using a transition (or state) diagram:

Interpretation: machine is either broken (0) or working (1) at start of n-th day.
Example 2: (Simple random walk) Let \(\xi_1, \xi_2, \xi_3, \ldots \) be iid random variables such that \(\forall i \geq 1 \),

\[
\begin{align*}
\xi_i &= \begin{cases}
+1 & P(\xi_i = +1) = p \\
0 & P(\xi_i = 0) = r \\
-1 & P(\xi_i = -1) = q
\end{cases},
\end{align*}
\]

where \(p + r + q = 1, \ p, r, q \geq 0 \).

- Let \(X_0 \) be an integer valued random variable independent of the \(\xi_i \)'s.
- Define \(\forall n \geq 1 \), \(X_n = X_0 + \sum_{i=1}^{n} \xi_i \).
- The process is a random walk.

\[\text{Exercise: What is } P \text{ for that Markov chain?} \]

\[\text{Chapman-Kolmogorov} \]

Theorem: (The Chapman-Kolmogorov Equations) We have for all \(m, n \geq 1 \):

\[
p^{(n+m)} = p^n \cdot p^m.
\]

In particular, for all \(n \geq 1 \),

\[
p^{(n)} = p \cdot p^{(n-1)} = \ldots = p^n.
\]

Moral: \(n \)-step transition probabilities are computed using matrix multiplications.

- Let \(\mu_n := (\mu_n(i) : i \in S) \) denote the distribution of \(X_n \):

\[
\mu_n(i) := P(X_n = i).
\]

Proposition: We have

\[
\mu_{m+n} = \mu_m p^n, \quad \text{and} \quad \mu_n = \mu_0 p^n.
\]

Moral: Distributional computations for Markov Chains are just matrix multiplications.
Reducibility

- **Reducibility:**
 - A state \(j \in S \) is said to be **accessible** from \(i \in S \) (denoted \(i \rightarrow j \)) if a system started in state \(i \) has a non-zero probability of transitioning into state \(j \) at some point.
 - A state \(i \in S \) is said to **communicate** with state \(j \in S \) (denoted \(i \leftrightarrow j \)) if both \(i \rightarrow j \) and \(j \rightarrow i \).

Note: Communication is an equivalence relation.

A Markov chain is said to be **irreducible** if its state space is a single communicating class.

Transience and periodicity

- **Transience:**
 - A state \(i \in S \) is said to be **transient** if, given that we start in state \(i \), there is a non-zero probability that we will never return to \(i \).
 - A state is **recurrent** if it is not transient.
 - The recurrence time of state \(i \in S \) is \(T_i = \min\{n \geq 1 : X_n = i \text{ given } X_0 = i\} \).

Note: \(i \in S \) is recurrent if \(P(T_i < \infty) = 1 \).

- **Periodicity:**
 - A state \(i \in S \) has period \(k \) if
 \[
 k = \gcd\{n > 0 : P(X_n = i|X_0 = i) > 0\}.
 \]
 - For example, suppose you start in state \(i \) and can only return to \(i \) at time 6, 8, 10, 12, etc. Then the period of \(i \) is 2.
 - If \(k = 1 \), then the state is said to be aperiodic.

A Markov chain is **aperiodic** if every state is aperiodic.

Limiting behavior

Limiting behavior of Markov chains: What happens to \(p^n(i, j) \) as \(n \to \infty \)?

Example: (The two-state Markov chain)

If \((a, b) \neq (0, 0) \), we have (exercise):
\[
p^n = \frac{1}{a+b} \begin{pmatrix} b & a \\ b & a \end{pmatrix} + \frac{(1-a-b)^n}{a+b} \begin{pmatrix} -a & -a \\ b & b \end{pmatrix}.
\]

Thus, if \((a, b) \neq (0, 0) \) and \((a, b) \neq (1, 1) \), then
\[
\lim_{n \to \infty} p^n(0, 0) = \lim_{n \to \infty} p^n(1, 0) = \frac{b}{a+b}
\]
\[
\lim_{n \to \infty} p^n(0, 1) = \lim_{n \to \infty} p^n(1, 1) = \frac{a}{a+b}.
\]

Thus, the chain has a limiting distribution.

The limiting distribution is **independent of the initial state**.

Stationary distribution

Recall: \(\mu_{n+1} = \mu_n P \).

A vector \(\pi = (\pi(i) : i \in S) \) is said to be a **stationary distribution** for a Markov chain \(\{X_n : n \geq 0\} \) if
- \(0 \leq \pi_i \leq 1 \ \forall i \in S \).
- \(\sum_{i \in S} \pi_i = 1 \).
- \(\pi = \pi P \), where \(P \) is the transition probability matrix of the Markov chain.

Remark: In general, a stationary distribution may not exist or be unique.

Theorem: Let \(\{X_n : n \geq 0\} \) be an irreducible and aperiodic Markov chain where each state is positive recurrent. Then
- The chain has a unique stationary distribution \(\pi \).
- For all \(i \in S \), \(\lim_{n \to \infty} P(X_n = i) = \pi(i) \).
- \(\pi_i = \frac{1}{\pi_j} \).

\(\pi(i) \) can be interpreted as the average proportion of time spent by the chain in state \(i \).