Spectral clustering: overview

In the previous lecture, we discussed how K-means can be used to cluster points in \(\mathbb{R}^p \).

Spectral clustering:

- Very popular clustering method.
- Often outperforms other methods such as K-means.
- Can be used for various “types” of data (not only points in \(\mathbb{R}^p \)).
- Easy to implement. Only uses basic linear algebra.

Overview of spectral clustering:

1. Construct a similarity matrix measuring the similarity of pairs of objects.
2. Use the similarity matrix to construct a (weighted or unweighted) graph.
3. Compute eigenvectors of the graph Laplacian.
4. Cluster the graph using the eigenvectors of the graph Laplacian using the K-means algorithm.

Notation

We will use the following notation/conventions:

- \(G = (V, E) \) a graph with vertex set \(V = \{v_1, \ldots, v_n\} \) and edge set \(E \subset V \times V \).
- Each edge carries a weight \(w_{ij} \geq 0 \).
- The adjacency matrix of \(G \) is \(W = W_G = (w_{ij})_{i,j=1}^n \). We will assume \(W \) is symmetric (undirected graphs).
- The degree of \(v_i \) is \(d_i := \sum_{j=1}^n w_{ij} \).
- The degree matrix of \(G \) is \(D := \text{diag}(d_1, \ldots, d_n) \).
- We denote the complement of \(A \subset V \) by \(\overline{A} \).
- If \(A \subset V \), then we let \(\mathbb{1}_A = (f_1, \ldots, f_n)^T \in \mathbb{R}^n \), where \(f_i = 1 \) if \(v_i \in A \) and 0 otherwise.

Similarity graphs

We assume we are given a measure of similarity \(s \) between data points \(x_1, \ldots, x_n \in \mathcal{X} \):

\[
s : \mathcal{X} \times \mathcal{X} \to [0, \infty).
\]

- We denote by \(s_{ij} := s(x_i, x_j) \) the measure of similarity between \(x_i \) and \(x_j \).
- Equivalently, we may assume we have a measure of distance between data points (e.g. \((\mathcal{X}, d) \) is a metric space).
- Let \(d_{ij} := d(x_i, x_j) \), the distance between \(x_i \) and \(x_j \).
- From \(d_{ij} \) (or \(s_{ij} \)), we naturally build a similarity graph.
- We will discuss 3 popular ways of building a similarity graph.
Vertex set $\{v_1, \ldots, v_n\}$ where n is the number of data points.

- **The ϵ-neighborhood graph:** Connect all points whose pairwise distances are smaller than some $\epsilon > 0$. We usually don’t weight the edges. The graph is thus a simple graph (unweighted, undirected graph containing no loops or multiple edges).

- **The k-nearest neighbor graph:** The goal is to connect v_i to v_j if x_j is among the k nearest neighbors of x_i. However, this leads to a directed graph. We therefore define:
 - the k-nearest neighbor graph: v_i is adjacent to v_j iff x_j is among the k nearest neighbors of x_i, OR x_i is among the k nearest neighbors of x_j.
 - the mutual k-nearest neighbor graph: v_i is adjacent to v_j iff x_j is among the k nearest neighbors of x_i AND x_i is among the k nearest neighbors of x_j.

We weight the edges by the similarity of their endpoints.

The fully connected graph: Connect all points with edge weights s_{ij}. For example, one could use the Gaussian similarity function to represent a local neighborhood relationships:

$$s_{ij} = s(x_i, x_j) = \exp(-\|x_i - x_j\|^2/(2\sigma^2)) \quad (\sigma^2 > 0).$$

Note: σ^2 controls the width of the neighborhoods.

All graphs mentioned above are regularly used in spectral clustering.

Graph Laplacians

There are three commonly used definitions of the graph Laplacian:

- **The unnormalized Laplacian** is
 $$L := D - W.$$

- **The normalized symmetric Laplacian** is
 $$L_{\text{sym}} := D^{-1/2}LD^{-1/2} = I - D^{-1/2}W D^{-1/2}.$$

- **The normalized “random walk” Laplacian** is
 $$L_{\text{rw}} := D^{-1}L = I - D^{-1}W.$$

We begin by studying properties of the unnormalized Laplacian.

The unnormalized Laplacian

Proposition: The matrix L satisfies the following properties:

- For any $f \in \mathbb{R}^n$,
 $$f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

- L is symmetric and positive semidefinite.
- 0 is an eigenvalue of L with associated constant eigenvector 1.

Proof: To prove (1). $f^T L f = f^T D f - f^T W f = \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} w_{ij} f_i f_j$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} w_{ij} f_i f_j + \sum_{j=1}^{n} d_j f_j^2 \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

(2) follows from (1). (3) is easy.
Proposition: Let G be an undirected graph with non-negative weights. Then:

1. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph.
2. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $1_{A_i}, i = 1, \ldots, k$ of those components.

Proof: If f is an eigenvector associate to $\lambda = 0$, then

$$0 = f^T L f = \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2.$$

It follows that $f_i = f_j$ whenever $w_{ij} > 0$. Thus f is constant on the connected components of G. We conclude that the eigenspace of 0 is contained in $\text{span}(1_{A_1}, \ldots, 1_{A_k})$. Conversely, it is not hard to see that each 1_{A_i} is an eigenvector associated to 0 (write L in block diagonal form). \hfill \square

The normalized Laplacians

Proposition: The normalized Laplacians satisfy the following properties:

1. For every $f \in \mathbb{R}^n$, we have

$$f^T L_{\text{sym}} f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2.$$

2. λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ is an eigenvalue of L_{sym} with eigenvector $w = D^{1/2} u$.
3. λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigenproblem $Lu = \lambda Du$.

Proof: The proof of (1) is similar to the proof of the analogous result for the unnormalized Laplacian. (2) and (3) follow easily by using appropriate rescalings.