The bootstrap

- We saw before that decision trees often overfit the data.
- We will now discuss techniques that can be used to mitigate that problem.

Bootstrapping: General statistical method that relies on resampling data with replacement.

Idea: Given data \((y_i, x_i), i = 1, \ldots, n\), construct bootstrap samples by sampling \(n\) of the observations with replacement (i.e., allow repetitions):

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>((y_{i_1}, x_{i_1}))</td>
<td>((y_{j_1}, x_{j_1}))</td>
<td>((y_{k_1}, x_{k_1}))</td>
</tr>
<tr>
<td>((y_{i_2}, x_{i_2}))</td>
<td>((y_{j_2}, x_{j_2}))</td>
<td>((y_{k_2}, x_{k_2}))</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>((y_{i_n}, x_{i_n}))</td>
<td>((y_{j_n}, x_{j_n}))</td>
<td>((y_{k_n}, x_{k_n}))</td>
</tr>
</tbody>
</table>

- Each bootstrap sample mimics the statistical properties of the original data.
- Often used to estimate parameter variability (or uncertainty).

Bagging

(Bootstrap aggregation) Suppose we have a model \(y \approx f(x)\) for data \((y_i, x_i) \in \mathbb{R}^{p+1}\).

1. Construct \(B \in \mathbb{N}\) bootstrap samples.
2. Train the method on the \(b\)-th bootstrap sample to get \(\hat{f}^b(x)\).
3. Compute the average of the estimators:

\[
\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}^b(x).
\]

- Bagging is often used with regression trees.
- Can improve estimators significantly.

Note: Each bootstrap tree will typically involve different features than the original, and might have a different number of terminal nodes.

The bagged estimate is the average prediction at \(x\) **from these** \(B\) **trees.**

For classification: Use a majority vote from the \(B\) trees.

Example: trees with simulated data (ESL, Example 8.7.1)

Simulation:

- \(N = 30\) samples with \(p = 5\) features.
- Features from a standard Gaussian distribution with pairwise correlation 0.95.
- \(Y\) generated according to

\[
P(Y = 1|X_1 \leq 0.5) = 0.2 \quad P(Y = 1|X_1 > 0.5) = 0.8.
\]

- A test sample of size 2,000 was also generated using the same model.
- The test error for the original tree and the bagged tree are reported.
Example (cont.)

Bootstrap trees:

ESL, Figure 8.9.

Test error:

Out-of-bag error: Mean prediction error on each training sample x_i, using only the trees that did not have x_i in their bootstrap sample.
Can be used to approximate the prediction error.

Random forests

- Idea of bagging: average many noisy but approximately unbiased models, and hence reduce the variance.
- However, the bootstrap trees are generally correlated.
- Random forests improve the variance reduction of bagging by reducing the correlation between the trees.
- Achieved in the tree-growing process through random selection of the input variables.
- Popular method.

Random forests (cont.)

Random forests: Each time a split in a tree is considered, a random selection of m predictors is chosen as split candidates from the full set of p predictors.
- Typical value for m is \sqrt{p}.
- We construct T_1, \ldots, T_B trees using that method on bootstrap samples. The random forest (regression) predictor is

$$
\hat{f}_B^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)
$$

For classification: use majority vote.
Diagnostic classification of four childhood tumors (Khan et al., 2001):
- Small, round, blue-cell tumors (SRBCTs) of childhood.
- Four types of SRBCTs (EWS, BL, NB, RMS).
- Tumors have a similar appearance.
- Getting the diagnosis correct impacts directly upon the type of treatment, therapy, and prognosis the patient receives.
- Currently, no single clinical test that can discriminate between these cancers.

Data:
- 83 cases (29 EWS, 11 BL, 18 NB, 25 RMS).
- Gene expression data for 6,567 genes, reduced to 2,308 by requiring a minimum intensity.
- A random forest was applied to these data using 500 fully grown trees with $m = 25$ variables at each split.
- Able to get a 0\% Out-of-bag misclassification rate.

Boosting
Like bagging, boosting is a general approach that can be applied to many models. Combines weak learners into a single strong learner.

Boosting: Recursively fit trees to residuals. (Compensate the shortcoming of previous model.)

Input: $(y_i, x_i) \in \mathbb{R}^{p+1}, i = 1, \ldots, n$. Initialize $\hat{f}(x) = 0$, $r_i = y_i$.

For $b = 1, \ldots, B$:
- Fit a tree estimator \hat{f}_b with d splits to the training data.
- Update the estimator using:
 $$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \cdot \hat{f}_b(x).$$
- Update the residuals:
 $$r_i \leftarrow r_i - \lambda \cdot \hat{f}_b(x_i).$$

Output: Boosted tree:
$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}_b(x).$$

Note: $\lambda > 0$ is a learning rate.

Relative importance of predictor variables
- The previous methodologies can improve decision trees considerably.
- However, we lose the nice interpretability of decision trees.
- A relative importance of each predictor can be computed to help understand a model with multiple trees.
- Let T be a (binary) decision tree with $J - 1$ internal nodes.
- At each internal node t, a variable $X_{v(t)}$ is split, resulting in an improvement $\hat{\iota}_t^2$ in squared error.
- We define a measure of relevance of X_t by
 $$\mathcal{I}_t^2(T) := \sum_{t=1}^{J-1} \hat{\iota}_t^2 \cdot I(v(t) = t).$$

In other words, we add-up the improvements at the nodes where X_t is split.
Similarly, in a model obtained from M trees (e.g. bagging, random forest), we use:

$$I_i^2 = \frac{1}{M} \sum_{m=1}^{M} I_i^2(T_m).$$

Taking the square root of the relevance measure, we obtain the relevance of X_i.

Typically, we do not report the actual relevance of a variable. We rather report the percentage of relevance of a given variable with respect to the variable with the largest relevance.