Motivation

- High-dimensional data often has a low-rank structure.
- Most of the “action” may occur in a subspace of \(\mathbb{R}^p \).

Problem: How can we discover low dimensional structures in data?

- Principal components analysis: construct projections of the data that capture most of the variability in the data.
- Provides a low-rank approximation to the data.
- Can lead to a significant dimensionality reduction.

Principal component analysis (PCA)

Let \(X \in \mathbb{R}^{n \times p} \) with rows \(x_1, \ldots, x_n \in \mathbb{R}^p \). We think of \(X \) as \(n \) observations of a random vector \((X_1, \ldots, X_p) \in \mathbb{R}^p\).

Suppose each column has mean 0, i.e., \(\sum_{i=1}^{n} x_i = 0_{1 \times p} \).

We want to find a linear combination \(w_1 X_1 + \cdots + w_p X_p \) with maximum variance. (Intuition: we look for a direction in \(\mathbb{R}^p \) where the data varies the most.)

We solve:

\[
\begin{align*}
 w &= \arg \max_{\|w\|^2 = 1} n \sum_{i=1}^{n} (x_i^T w)^2. \\
 (\text{Note: } \sum_{i=1}^{n} (x_i^T w)^2 \text{ is proportional to the sample variance of the data since we assume each column of } X \text{ has mean 0).}
\end{align*}
\]

Equivalently, we solve:

\[
\begin{align*}
 w &= \arg \max_{\|w\|^2 = 1} (Xw)^T (Xw) = \arg \max_{\|w\|^2 = 1} w^T X^T X w
\end{align*}
\]

Claim: \(w \) is an eigenvector associated to the largest eigenvalue of \(X^T X \).

Proof of claim: Rayleigh quotients

Let \(A \in \mathbb{R}^{p \times p} \) be a symmetric (or Hermitian) matrix. The Rayleigh quotient is defined by

\[
R(A, x) = \frac{x^T A x}{x^T x} = \frac{\langle Ax, x \rangle}{\langle x, x \rangle}, \quad (x \in \mathbb{R}^p, x \neq 0_{p \times 1}).
\]

Observations:

- If \(Ax = \lambda x \) with \(\|x\|_2 = 1 \), then \(R(A, x) = \lambda \). Thus,
 \[
 \sup_{x \neq 0} R(A, x) \geq \lambda_{\max}(A).
 \]

- Let \(\{\lambda_1, \ldots, \lambda_p\} \) denote the eigenvalues of \(A \), and let \(\{v_1, \ldots, v_p\} \subset \mathbb{R}^p \) be an orthonormal basis of eigenvectors of \(A \). If \(x = \sum_{i=1}^{p} \theta_i v_i \), then \(R(A, x) = \frac{\sum_{i=1}^{p} \lambda_i \theta_i^2}{\sum_{i=1}^{p} \theta_i^2} \).
 It follows that \(\sup_{x \neq 0} R(A, x) \leq \lambda_{\max}(A) \).

Thus, \(\sup_{x \neq 0} R(A, x) = \sum_{i=2}^{p} x^T A x = \lambda_{\max}(A) \).
Previous argument shows that

\[
aw(1) = \arg\max_{\|w\|_2=1} \sum_{i=1}^{n} (x_i^T w)^2 = \arg\max_{\|w\|_2=1} w^T X^T X w
\]

is an eigenvector associated to the largest eigenvalue of \(X^T X\).

First principal component:
- The linear combination \(\sum_{i=1}^{p} w(1)_i X_i\) is the first principal component of \((X_1, \ldots, X_p)\).
- Alternatively, we say that \(X w(1)\) is the first (sample) principal component of \(X\).
- It is the linear combination of the columns of \(X\) having the “most variance”.

Second principal component: We look for a new linear combination of the \(X_i\)’s that
 - Is orthogonal to the first principal component, and
 - Maximizes the variance.

In other words:

\[
w(2) := \arg\max_{\|w\|_2=1, \ w \perp w(1)} \sum_{i=1}^{n} (x_i^T w)^2 = \arg\max_{\|w\|_2=1, \ w \perp w(1)} w^T X^T X w.
\]

- Using a similar argument as before with Rayleigh quotients, we conclude that \(w(2)\) is an eigenvector associated to the second largest eigenvalue of \(X^T X\).
- Similarly, given \(w(1), \ldots, w(k)\), we define

\[
w(k+1) := \arg\max_{\|w\|_2=1, \ w \perp w(1), w(2), \ldots, w(k)} \sum_{i=1}^{n} (x_i^T w)^2 = \arg\max_{\|w\|_2=1, \ w \perp w(1), w(2), \ldots, w(k)} w^T X^T X w.
\]

As before, the vector \(w(k+1)\) is an eigenvector associated to the \((k + 1)\)-th largest eigenvalue of \(X^T X\).

PCA: summary

In summary, suppose

\[
X^T X = U \Lambda U^T
\]

where \(U \in \mathbb{R}^{p \times p}\) is an orthogonal matrix and \(\Lambda \in \mathbb{R}^{p \times p}\) is diagonal. (Eigendecomposition of \(X^T X\).)

- Recall that the columns of \(U\) are the eigenvectors of \(X^T X\) and the diagonal of \(\Lambda\) contains the eigenvalues of \(X^T X\) (i.e., the singular values of \(X\)).
- Then the principal components of \(X\) are the columns of \(X U\).
- Write \(U = (u_1, \ldots, u_p)\). Then the variance of the \(i\)-th principal component is

\[
(X u_i)^T (X u_i) = u_i^T X^T X u_i = (U^T X^T X U)_{ii} = \Lambda_{ii}.
\]

Conclusion: The variance of the \(i\)-th principal component is the \(i\)-th eigenvalue of \(X^T X\).

We say that the first \(k\) PCs explain \((\sum_{i=1}^{k} \Lambda_{ii}) / (\sum_{i=1}^{p} \Lambda_{ii}) \times 100\) percent of the variance.

Example: zip dataset

Recall the zip dataset:
- 9298 images of digits 0 – 9.
- Each image is in black/white with 16 × 16 = 256 pixels.

We use PCA to project the data onto a 2-dim subspace of \(\mathbb{R}^{256}\).

```python
from sklearn.decomposition import PCA
pc = PCA(n_components=10)
pca.fit(X_train)
print(pc.explained_variance_ratio_)
plt.plot(range(1,11), np.cumsum(pc.explained_variance_ratio_))
```
Example: zip dataset (cont.)

Projecting the data on the first two principal components:
\[X_t = \text{pc.fit_transform}(X_{\text{train}}). \]

![Plot](image.png)

- Note: \(\approx 27\% \) variance explained by the first two PCAs.
- \(\approx 90\% \) variance explained by first 55 components.

Principal component regression

- PCAs can be directly used in a regression context.

Principal component regression: \(y \in \mathbb{R}^{n \times 1}, X \in \mathbb{R}^{n \times p}. \)
- Center \(y \) and each column of \(X \) (i.e., subtract mean from the columns)
- Compute the eigen-decomposition of \(X^T X: \)
 \[X^T X = U \Lambda U^T. \]
- Compute \(k \geq 1 \) principal components:
 \[W_k := (X u_1, \ldots, X u_k) = X U_k, \]
 where \(U = (u_1, \ldots, u_p) \), and \(U_k = (u_1, \ldots, u_k) \in \mathbb{R}^{p \times k}. \)
- Regress \(y \) on the principal components:
 \[\hat{\gamma}_k := (W_k^T W_k)^{-1} W_k^T y. \]
- The PCR estimator is:
 \[\hat{\beta}_k := U_k \hat{\gamma}_k, \quad \hat{y}^{(k)} := X \hat{\beta}_k = X U_k \hat{\gamma}_k. \]

Note: \(k \) is a parameter that needs to be chosen (using CV or another method). Typically, one picks \(k \) to be significantly smaller than \(p \).

Projection pursuit

- PCA looks for subspaces with the most variance.
- Can also optimize other criteria.

Projection pursuit (PP):
- Set up a projection “index” to judge the merit of a particular one or two-dimensional projection of a given set of multivariate data.
- Use an optimization algorithm to find the global and local extrema of that projection index over all 1/2-dimensional projections of the data.

Example: (Izenman, 2013) The absolute value of kurtosis, \(|\kappa_4(Y)| \), of the one-dimensional projection \(Y = w^T X \) has been widely used as a measure of non-Gaussianity of \(Y \).
- Recall: The marginals of the multivariate Gaussian distribution are Gaussian.
- Can maximize/minimize the kurtosis to find subspaces where data looks Gaussian/non-Gaussian (e.g. to detect outliers).