MATH 829: Introduction to Data Mining and Analysis
Lab 1: phoneme dataset

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

March 18, 2016
Recall: Basis for cubic splines

Cubic splines basis: With 2 knots ξ_1, ξ_2:

\[
\begin{align*}
 h_1(X) &= 1, & h_3(X) &= X^2, & h_5(X) &= (X - \xi_1)_+, \\
 h_2(X) &= X, & h_4(X) &= X^3, & h_6(X) &= (X - \xi_2)_+.
\end{align*}
\]

More generally, with M knots, add $(X - \xi_3)_+, \ldots, (X - \xi_M)_+$.

Natural cubic splines basis: With M knots

\[
\begin{align*}
 N_1(X) &= 1, & N_2(X) &= X, & N_{k+2}(X) &= d_k(X) - d_{M-1}(x),
\end{align*}
\]

where

\[
d_k(X) = \frac{(X - \xi_k)_+ - (X - \xi_M)_+}{\xi_M - \xi_k}.
\]
Example: Phoneme Recognition (ESL, Example 5.2.3)

15 examples each of the phonemes “aa” and “ao” sampled from a total of 695 “aa”s and 1022 “ao”s.

\[
X = X(f)
\]

\[
f = \text{frequency.}
\]

\[
\log \frac{P(aa|X)}{P(ao|X)} = \sum_{i=1}^{256} X(f_i)\beta_i
\]

\[
= X^T\beta.
\]
Phoneme recognition (cont.)

Logistic regression coefficients, and smoothed version with natural cubic splines.

\[
\beta(f) = \sum_{i=1}^{M} h_m(f) \theta_m = \mathbf{H} \theta,
\]

where \(\mathbf{H} \) is a \(p \times M \) matrix of spline functions. Now, note that

\[
X^T \beta = X^T \mathbf{H} \theta.
\]

Letting \(x^* = \mathbf{H}^T x \), we can therefore fit the logistic regression on the \textit{smoothed} inputs.
Work to do

- Write a function to construct natural cubic splines (can use a class if you want).
- Test your function:

![Graph]

- Construct the matrix $H \in \mathbb{R}^{p \times M}$ where $H_{ij} = h_j(f_i)$ as in the previous slide.
- Load the phoneme data. $X \in \mathbb{R}^{n \times p}$, $y \in \{0, 1\}^n$.
- Use a logistic regression on the transformed data XH to predict the phonemes. Compute your prediction error.