MATH 567: Mathematical Techniques in Data Science
Decision trees

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

April 17, 2016
Decision trees

Tree-based methods:
- Partition the feature space into a set of rectangles.
- Fit a simple model (e.g. a constant) in each rectangle.
- Conceptually simple yet powerful.

Izenman, 2013, Figure 9.1.
Example: spam data

ESL, Figure 9.5.
Advantages:

- Often mimics human decision-making process (e.g. doctor examining patient).
- Very easy to explain and interpret.
- Can handle both regression and classification problems.
Advantages:
- Often mimics human decision-making process (e.g. doctor examining patient).
- Very easy to explain and interpret.
- Can handle both regression and classification problems.

Disadvantage:
- Basic implementation is generally not competitive compared to other methods.
Advantages:

- Often mimics human decision-making process (e.g. doctor examining patient).
- Very easy to explain and interpret.
- Can handle both regression and classification problems.

Disadvantage:

- Basic implementation is generally not competitive compared to other methods.
- However, by **aggregating many decision trees** and using other variants, one can improve the performance significantly.
- Such techniques lead to state-of-the-art models.
Decision trees

Advantages:
- Often mimics human decision-making process (e.g. doctor examining patient).
- Very easy to explain and interpret.
- Can handle both regression and classification problems.

Disadvantage:
- Basic implementation is generally not competitive compared to other methods.
- However, by aggregating many decision trees and using other variants, one can improve the performance significantly.
- Such techniques lead to state-of-the-art models.
- However, in doing so, one loses the easy interpretability of decision trees.
To simplify, we will only consider **binary** decision trees.

Top Left: Not binary. Top Right: binary.

Bottom Left: Tree corresponding to Top Right partition. Bottom Right: Prediction surface.
How to grow a decision tree?

Regression tree:
- **Data:** $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$.
- **Each observation:** $(y_i, x_i) \in \mathbb{R}^{p+1}$, $i = 1, \ldots, n$.

Suppose we have a partition of \mathbb{R}^p into M regions R_1, \ldots, R_M.

We predict the response using a constant on each R_i:

$$f(x) = \sum_{i=1}^{M} c_i \cdot 1_{x \in R_i}.$$

In order to minimize $\sum_{i=1}^{n} (y_i - f(x_i))^2$, one needs to choose:

$$\hat{c}_i = \text{ave}(y_j : x_j \in R_i).$$

How do we determine the regions R_i, i.e., how do we grow the tree?

- Which variable to split.
- Where to split that variable.
How to grow a decision tree?

Regression tree:

- **Data:** $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$.
- **Each observation:** $(y_i, x_i) \in \mathbb{R}^{p+1}$, $i = 1, \ldots, n$.

Suppose we have a partition of \mathbb{R}^p into M regions R_1, \ldots, R_m.

In order to minimize $\sum_{i=1}^{n} (y_i - f(x_i))^2$, one needs to choose:

$\hat{c}_i = \text{ave} \left(y_j : x_j \in R_i \right)$.

How do we determine the regions R_i, i.e., how do we grow the tree?

We need to decide:

1. Which variable to split.
2. Where to split that variable.
How to grow a decision tree?

Regression tree:

- **Data:** $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$.
- **Each observation:** $(y_i, x_i) \in \mathbb{R}^{p+1}$, $i = 1, \ldots, n$.

Suppose we have a partition of \mathbb{R}^p into M regions R_1, \ldots, R_m. We predict the response using a constant on each R_i:

$$f(x) = \sum_{i=1}^{m} c_i \cdot 1_{x \in R_i}.$$
How to grow a decision tree?

Regression tree:
- **Data:** $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$.
- **Each observation:** $(y_i, x_i) \in \mathbb{R}^{p+1}$, $i = 1, \ldots, n$.

Suppose we have a partition of \mathbb{R}^p into M regions R_1, \ldots, R_m. We predict the response using a constant on each R_i:

$$f(x) = \sum_{i=1}^{m} c_i \cdot 1_{x \in R_i}.$$

In order to minimize $\sum_{i=1}^{n} (y_i - f(x_i))^2$, one needs to choose:

$$\hat{c}_i = \text{ave}(y_j : x_j \in R_i).$$
How to grow a decision tree?

Regression tree:

- **Data:** $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$.
- **Each observation:** $(y_i, x_i) \in \mathbb{R}^{p+1}$, $i = 1, \ldots, n$.

Suppose we have a partition of \mathbb{R}^p into M regions R_1, \ldots, R_m. We predict the response using a constant on each R_i:

$$f(x) = \sum_{i=1}^{m} c_i \cdot \mathbf{1}_{x \in R_i}.$$

In order to minimize $\sum_{i=1}^{n} (y_i - f(x_i))^2$, one needs to choose:

$$\hat{c}_i = \text{ave}(y_j : x_j \in R_i).$$

How do we determine the regions R_i, i.e., how do we “grow” the tree?
Regression tree:

- **Data:** \(y \in \mathbb{R}^n, \ X \in \mathbb{R}^{n \times p}. \)
- **Each observation:** \((y_i, x_i) \in \mathbb{R}^{p+1}, \ i = 1, \ldots, n.\)

Suppose we have a partition of \(\mathbb{R}^p \) into \(M \) regions \(R_1, \ldots, R_m. \)

We predict the response using a constant on each \(R_i: \)

\[
f(x) = \sum_{i=1}^{m} c_i \cdot 1_{x \in R_i}.
\]

In order to minimize \(\sum_{i=1}^{n} (y_i - f(x_i))^2 \), one needs to choose:

\[
\hat{c}_i = \text{ave}(y_j : x_j \in R_i).
\]

How do we determine the regions \(R_i \), i.e., how do we “grow” the tree?

We need to decide:

1. Which variable to split.
2. Where to split that variable.
Growing a tree

- Finding a (globally) optimal tree is generally computationally infeasible.
- We use a greedy algorithm.

Consider a splitting variable \(j \in \{1, \ldots, p\} \) and splitting point \(s \in \mathbb{R} \).

Define the two half-planes:

- \(R_1(j, s) := \{ x \in \mathbb{R}^p : x_j \leq s \} \)
- \(R_2(j, s) := \{ x \in \mathbb{R}^p : x_j > s \} \)

We choose \(j, s \) to minimize

\[
\min_{j, s} \left(\sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right)
\]

The determination of the splitting point \(s \) can be done very quickly. Hence, determining the best pair \((j, s) \) is feasible.

Repeat the same process to each block.
Growing a tree

- Finding a (globally) optimal tree is generally computationally infeasible.
- We use a greedy algorithm.

Consider a splitting variable $j \in \{1, \ldots, p\}$ and splitting point $s \in \mathbb{R}$.

Denote the two half-planes:

$$R_1(j,s) := \{ x \in \mathbb{R}^p : x_j \leq s \}$$
$$R_2(j,s) := \{ x \in \mathbb{R}^p : x_j > s \}$$

We choose j, s to minimize

$$\min_{j,s} \left(\min_{c_1 \in \mathbb{R}} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2 \in \mathbb{R}} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right)$$

The determination of the splitting point s can be done very quickly. Hence, determining the best pair (j, s) is feasible.

Repeat the same process to each block.
Growing a tree

- Finding a (globally) optimal tree is generally computationally infeasible.
- We use a greedy algorithm.

Consider a splitting variable $j \in \{1, \ldots, p\}$ and splitting point $s \in \mathbb{R}$.

Define the two half-planes:

$$R_1(j, s) := \{x \in \mathbb{R}^p : x_j \leq s\}, \quad R_2(j, s) := \{x \in \mathbb{R}^p : x_j > s\}.$$
Growing a tree

- Finding a (globally) optimal tree is generally computationally infeasible.
- We use a greedy algorithm.

Consider a splitting variable \(j \in \{1, \ldots, p\} \) and splitting point \(s \in \mathbb{R} \).

Define the two half-planes:

\[
R_1(j, s) := \{ x \in \mathbb{R}^p : x_j \leq s \}, \quad R_2(j, s) := \{ x \in \mathbb{R}^p : x_j > s \}.
\]

We choose \(j, s \) to minimize

\[
\min_{j, s} \left[\min_{c_1 \in \mathbb{R}} \sum_{x_i \in R_1(j, s)} (y_i - c_1)^2 + \min_{c_2 \in \mathbb{R}} \sum_{x_i \in R_2(j, s)} (y_i - c_2)^2 \right].
\]

- The determination of the splitting point \(s \) can be done very quickly.
Growing a tree

- Finding a (globally) optimal tree is generally computationally infeasible.
- We use a greedy algorithm.

Consider a splitting variable \(j \in \{1, \ldots, p\} \) and splitting point \(s \in \mathbb{R} \).

Define the two half-planes:

\[
R_1(j, s) := \{x \in \mathbb{R}^p : x_j \leq s\}, \quad R_2(j, s) := \{x \in \mathbb{R}^p : x_j > s\}.
\]

We choose \(j, s \) to minimize

\[
\min_{j, s} \left[\min_{c_1 \in \mathbb{R}} \sum_{x_i \in R_1(j, s)} (y_i - c_1)^2 + \min_{c_2 \in \mathbb{R}} \sum_{x_i \in R_2(j, s)} (y_i - c_2)^2 \right].
\]

- The determination of the splitting point \(s \) can be done very quickly.
- Hence, determining the best pair \((j, s)\) is feasible.

Repeat the same process to each block.
Stopping rules and pruning

Generally, the process is stopped for a given region when there are less than 5 observations in that region.
Stopping rules and pruning

- Generally, the process is stopped for a given region when there are less than 5 observations in that region.

Problem with previous methodology:
- Likely to **overfit** the data.
- Can lead to poor prediction error.
Stopping rules and pruning

- Generally, the process is stopped for a given region when there are **less than** 5 observations in that region.

Problem with previous methodology:
- Likely to **overfit** the data.
- Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (overfits), and then prune it (better).
Stopping rules and pruning

- Generally, the process is stopped for a given region when there are less than 5 observations in that region.

Problem with previous methodology:
- Likely to overfit the data.
- Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (overfits), and then prune it (better).

- **Weakest link pruning:**
 (a.k.a cost complexity pruning)
 Let $T \subset T_0$ be a subtree of T_0 with $|T|$ terminal nodes. For $\alpha > 0$, define:

 $$C_\alpha(T) := \sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha \cdot |T|.$$
Stopping rules and pruning

- Generally, the process is stopped for a given region when there are less than 5 observations in that region.

Problem with previous methodology:
- Likely to overfit the data.
- Can lead to poor prediction error.

Pruning the tree. Strategy: Grow a large tree (overfits), and then prune it (better).
- Weakest link pruning: (a.k.a. cost complexity pruning)

Let $T \subset T_0$ be a subtree of T_0 with $|T|$ terminal nodes. For $\alpha > 0$, define:

$$C_\alpha(T) := \sum_{m=1}^{\lfloor T \rfloor} \sum_{i : x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha \cdot |T|.$$

Pick a subtree minimizing $C_\alpha(T)$.

Pick a subtree $T \subset T_0$ minimizing:

$$C_\alpha(T) := \sum_{m=1}^{\mid T \mid} \sum_{i : x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha \cdot |T|.$$

(Here, $\hat{y}_{R_m} =$average response for observations in R_m.)
Pick a subtree $T \subset T_0$ minimizing:

$$C_\alpha(T) := \sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha \cdot |T|.$$

(Here, $\hat{y}_{R_m} =$average response for observations in R_m.)

- α is a tuning parameter.
- Trade-off between fit of the model, and tree complexity.
- Choose α using cross-validation.
Pruning (cont.)

Pick a subtree $T \subset T_0$ minimizing:

$$C_\alpha(T) := \sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha \cdot |T|.$$

(Here, \hat{y}_{R_m} = average response for observations in R_m.)

- α is a tuning parameter.
- Trade-off between fit of the model, and tree complexity.
- Choose α using cross-validation.

Once α has been chosen by CV, use whole dataset to find the tree corresponding to that value.
So far, we discussed **regression** trees (continuous output).
Classification trees

- So far, we discussed **regression** trees (continuous output).
- We can easily modify the methodology to predict a **categorical** output.
So far, we discussed **regression** trees (continuous output).

We can easily modify the methodology to predict a **categorical** output.

We only need to modify our **splitting and pruning criteria**.
So far, we discussed regression trees (continuous output).

We can easily modify the methodology to predict a categorical output.

We only need to modify our splitting and pruning criteria. For continuous variables, we picked a constant in each box R_i to minimize the sum of squares in that region:

$$
\min_{c \in \mathbb{R}} \sum_{x_i \in R_i} (y_i - c)^2.
$$
So far, we discussed regression trees (continuous output).
We can easily modify the methodology to predict a categorical output.
We only need to modify our splitting and pruning criteria.
For continuous variables, we picked a constant in each box R_i to minimize the sum of squares in that region:

$$
\min_{c \in \mathbb{R}} \sum_{x_i \in R_i} (y_i - c)^2.
$$

As a result, we choose:

$$
\hat{c}_i = \frac{1}{N_i} \sum_{x_k \in R_i} y_k,
$$

where N_i denotes the number of observations in R_i.

Similarly, when the output is categorical, we can count the proportion of class \(k \) observations in node \(i \):

\[
\hat{p}_{ik} = \frac{1}{N_i} \sum_{x_l \in R_i} 1_{y_l \in R_i}.
\]
Similarly, when the output is categorical, we can count the proportion of class k observations in node i:

$$\hat{p}_{ik} = \frac{1}{N_i} \sum_{x_l \in R_i} 1_{y_l \in R_i}.$$

We then classify the observations in node i using a **majority vote**:

$$k(i) := \arg\max_k \hat{p}_{ik}.$$
Similarly, when the output is categorical, we can count the proportion of class k observations in node i:

$$\hat{p}_{ik} = \frac{1}{N_i} \sum_{x_l \in R_i} 1_{y_l \in R_i}.$$

We then classify the observations in node i using a **majority vote**:

$$k(i) := \arg\max_k \hat{p}_{ik}.$$

Different measures are commonly used to determine how good a given partition is (and how to split a given partition):

1. **Misclassification error:**
 $$\frac{1}{N_i} \sum_{x_l \in R_i} 1_{y_l \neq k(i)} = 1 - \hat{p}_{i,k(i)}.$$

2. **Gini index:**
 $$\sum_{k \neq k'} \hat{p}_{ik} \hat{p}_{ik'} = \sum_{k=1}^K \hat{p}_{ik} (1 - \hat{p}_{ik}).$$

3. **Cross-entropy (or deviance):**
 $$- \sum_{k=1}^K \hat{p}_{ik} \log \hat{p}_{ik}.$$
With two classes and a proportion of $0 < p < 1$ observations in the second class, we have (exercise):

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misclassification error</td>
<td>$1 - \max(p, 1 - p)$</td>
</tr>
<tr>
<td>Gini index</td>
<td>$2p(1 - p)$</td>
</tr>
<tr>
<td>Cross-entropy</td>
<td>$-p \log p - (1 - p) \log(1 - p)$</td>
</tr>
</tbody>
</table>

ESL, Figure 9.3.
Pima Indian (nativa American) population lives near Phoenix, Arizona.

The diversion of the water and the introduction of non-native diet had devastating effects on the health of the people. They have the highest prevalence of type 2 diabetes in the world, much more than is observed in other U.S. populations. They have been the subject of intensive study of diabetes. ¹

Patients listed in the dataset are females at least 21 years old of Pima Indian heritage.

8 input variables (e.g. number of times pregnant, body mass index, plasma glucose concentration, etc.).

¹Wikipedia
Classification tree for the Pima Indians diabetes data. Impurity measure = Gini index. (Izenman, Figure 9.5.)