MATH 567: Mathematical Techniques in Data Science
Lab 3

Dominique Guillot

Departments of Mathematical Sciences
University of Delaware

February 22, 2017
Exercise 1

1. Install the package glmnet (if not already installed).
2. Examine the documentation of the glmnet function (\texttt{?glmnet})
3. Generate random data:

\begin{verbatim}
 n <- 100 # Sample size
 p <- 500 # Nb. of variables
 true_p <- 10
 X <- matrix(rnorm(n*p), nrow=n, ncol=p)
 true_beta = matrix(rep(0,p), nrow=p)
 true_beta[1:10] = 1
 SNR <- 1 # Signal-to-noise ratio
 # = ratio of variances
 noise <- matrix(rnorm(n, sd=1/sqrt(SNR)),nrow=n)
 y <- X %*% true_beta + noise
\end{verbatim}

Note: y depends only on the first 10 predictors.
4. Fit a ridge regression model to the data (use the options `family="gaussian", alpha=0` in `glmnet`).

5. What does the β variable of your ridge model contain? What about λ?

6. Use the command `matplot` to plot the regression coefficients as a function of λ for the first 10 estimated coefficients. (Note: `matplot` plots the columns of a matrix). Use the option `type="l"`.

7. Plot the coefficients 11:100 as a function of λ.

8. Repeat steps 4–7 for a lasso model instead of ridge (i.e., use $\alpha = 1$ in `glmnet`).

9. Repeat the previous steps with a lasso model, but with smaller values of SNR (e.g. SNR = 0.5, 0.25, 0.1). What do you observe?
Exercise 2: Cross-validation

1. Generate data as in the previous exercise with SNR = 1.0.
2. Run `?cv.glmnet` to see what `cv.glmnet` returns.
3. Fit a lasso model using cross-validation:
   ```r
cvlasso <- cv.glmnet(X, y, type.measure="mse", family="gaussian", alpha=1.0)
```
4. Plot the mean cross-validated error as a function of lambda.
5. Run `plot(cvlasso)` to plot the cross-validated error and its standard error.
6. Fit a lasso model (no cross-validation) with parameter \(\lambda = cvlasso$lambda.min \). Examine the coefficients.
   ```r
   best_lasso <- glmnet(X,y, family="gaussian", alpha=1.0, lambda=cvlasso$lambda.min)
   ```
7. What does the variable `cvlasso$lambda.1se` contain?
8. Get the non-zero coefficients in the previous model:
   ```r
   which(best_lasso$beta != 0).
   ```
9. Fit a linear model (`lm`) using only the lasso selected variables.
Exercise 3: Breast cancer tumors

The file `Westbc.rda` (available on Sakai) contains gene expression data ($p = 7,129$ genes) for $n = 49$ breast cancer tumor samples (West et al., 2001).

1. Load the data using `load("path-to-file/Westbc.rda")`. (You should have two new variables: `Westbc$assay` and `Westbc$pheno`).

2. Convert the variables `Westbc$pheno` to binary (0/1) values:
   ```r
   pheno <- matrix(rep(0,49), nrow=49)
   pheno[Westbc$pheno == 'positive'] = 1
   ```

3. Split the data into a training set (2/3) and a test set (1/3) randomly.

4. Fit a lasso model on the training set using cross-validation.

5. Plot the resulting cross-validation error (`plot(cvlasso)`).

6. Compute the prediction error on the test set using the optimal model.

7. Repeat the previous experiment with 100 random train/test sets and compute the average test error.