A NOTE ON THE ROOTS OF TRINOMIALS OVER A FINITE FIELD

ROBERT COULTER AND MARIE HENDERSON*

ABSTRACT. For non-negative integers \(n \) we determine the roots of the trinomial \(X^{p^n} - aX - b \), with \(a \neq 0 \), over a finite field of characteristic \(p \).

Throughout \(q = p^k \) where \(p \) is a prime and \(k \) is a positive integer. Let \(\mathbb{F}_q \) be the finite field of order \(q \), \(\mathbb{F}_q^* \) be the set of non-zero elements of \(\mathbb{F}_q \) and \(\mathbb{F}_q[X] \) be the ring of polynomials in the indeterminate \(X \) over \(\mathbb{F}_q \). In this article we determine the roots of the trinomial \(f \in \mathbb{F}_q[X] \) given by

\[
f(X) = X^{p^n} - aX - b
\]

(1)

where \(n \) is a positive integer. Throughout we assume \(a \in \mathbb{F}_q^* \) as otherwise \(f \) is a binomial and the factorisation is known, see [3]. The trinomial (1) has been considered in [2] for the case \(a = 1 \). The article [4] mainly considers the case where \(n \) divides \(k \). There is one result in [4] concerning the general case which we include below (see Lemma 2). We determine all roots of the trinomial (1) in Theorem 3 below and then cast these against the previous results described above.

We make use of the following lemma. This is essentially [1, Theorem 57].

Lemma 1. For positive integers \(r \) and \(k = md \) define

\[
I_r = \{ ir \mod k | 0 \leq i \leq m - 1 \}.
\]

If \(n \) is a positive integer satisfying \(\gcd(n, k) = d \), then \(I_n = I_d \).

The following lemma appears as Theorem 2 of [4].

Lemma 2. Let \(q = p^k \), \(n \) be a positive integer and \(f(X) = X^{p^n} - aX - b \) where \(a \in \mathbb{F}_q^* \) and \(b \in \mathbb{F}_q \). Then, in the field \(\mathbb{F}_q \), \(f \) has either zero, one or \(p^d \) roots where \(d = \gcd(n, k) \).

1991 Mathematics Subject Classification. 11T06.

*This author performed some of this work while at RMIT University and was supported by a RMIT VRII grant.
Following the statement of Theorem 2 in [4] the author remarks that it seems difficult to characterise the roots of (1). The following theorem gives the full solution to this problem.

Theorem 3. Let \(q = p^k \), \(n \) be a non-negative integer and \(f \in \mathbb{F}_q[X] \) be the trinomial \(f(X) = X^{p^n} - aX - b \) where \(a \in \mathbb{F}_q^* \). Set \(d = \gcd(n, k) \) and \(m = k/d \). Let \(\text{Tr}_d \) be the trace function from \(\mathbb{F}_q \) onto \(\mathbb{F}_{p^d} \). For \(0 \leq i \leq m - 1 \), define \(t_i = \sum_{j=1}^{m-2} p^{n(j+1)} \). Put \(\alpha_0 = a \) and \(\beta_0 = b \). If \(m > 1 \), then for \(1 \leq r \leq m-1 \), set \(\alpha_r = a^{1+p^n+\dotsc+p^{nr}} \) and

\[
\beta_r = \sum_{i=0}^{r} \alpha^i b^{p^{ni}}
\]

where \(s_i = \sum_{j=1}^{r-1} p^{n(j+1)} \) for \(0 \leq i \leq r - 1 \) and \(s_r = 0 \). The trinomial \(f \) has no roots in \(\mathbb{F}_q \) if and only if \(\alpha_{m-1} = 1 \) and \(\beta_{m-1} \neq 0 \). When \(\alpha_{m-1} \neq 1 \) then \(f \) has a unique root \(x \in \mathbb{F}_q \), namely, \(x = \beta_{m-1}/(1 - \alpha_{m-1}) \). Otherwise \(f \) has \(p^d \) roots in \(\mathbb{F}_q \) given by \(x + \delta \tau \) where \(\delta \in \mathbb{F}_{p^d} \), \(\tau \) is a fixed element of \(\mathbb{F}_q \) satisfying \(\tau^{p^n-1} = a \) and, for any \(c \in \mathbb{F}_q^* \) satisfying \(\text{Tr}_d(c) \in \mathbb{F}_{p^d} \),

\[
x = \frac{1}{\text{Tr}_d(c)} \sum_{i=0}^{m-1} \left(\sum_{j=0}^{i} c^{p^{nj}} \right) a^i b^{p^{ni}}.
\]

Proof. For any \(y \in \mathbb{F}_q \) we have \(y^{p^n} = y^{p^{(n/d)}} = y \). It follows that \(\alpha_{m-1}^{p^n} = \alpha_{m-1} \) and \(\beta_{m-1}^{p^n} = a \beta_{m-1} - b \alpha_{m-1} + b \). For \(0 \leq r \leq m-2 \), similar calculations give \(\alpha_r^{p^n} = a^{-1} \alpha_{r+1} \) and \(\beta_r^{p^n} = a^{\beta^{p^n(r+1)}} \beta_r - a^{-1} b \alpha_{r+1} + b \).

Suppose we have \(y^{p^n} = ay + b \) for some \(y \in \mathbb{F}_q \). Given an integer \(i \), \(1 \leq i \leq m - 1 \), for which \(y^{pni} = a y_i + \beta_{i-1} \) then

\[
y^{pni+1} = \alpha_i y^{pni} + \beta_{i-1}^{p^n} = \alpha_i y + b + \beta_{i-1}^{p^n} = \alpha_i y + a^{-1} b \alpha_i + a^{\beta^{p^n} \beta_{i-1} - a^{-1} b \alpha_i + b^{pni}} = \alpha_i y + \beta_i.
\]

where we have used the identity \(\beta_r = a^{\beta^{p^n} \beta_{r-1} + b^{p^{nr}}} \), for \(1 \leq r \leq m - 1 \).

As \(y^{p^n} = a y + \beta_0 \), it follows that \(y^{pni} = a y_i + \beta_{i-1} \) for all positive integers \(i \leq m \). In particular, \(y^{pnm} = a y_m + \beta_{m-1} \). Since \(y^{pnm} = y \), then \((\alpha_{m-1} - 1)y + \beta_{m-1} = 0 \). Immediately it is seen that no root exists when \(\alpha_{m-1} = 1 \) and \(\beta_{m-1} \neq 0 \). Also, if \(\alpha_{m-1} \neq 1 \), then there exists a unique root \(y = \beta_{m-1}/(1 - \alpha_{m-1}) \).
It remains to deal with the case when \(\alpha_{m-1} = 1 \) and \(\beta_{m-1} = 0 \). Firstly, let \(c \in \mathbb{F}_q \) satisfy \(\text{Tr}_d(c) \neq 0 \). Put \(\gamma_i = \sum_{j=0}^i \epsilon^{p^{nj}} \) for \(0 \leq i \leq m-1 \) and
\[
x = \frac{1}{\text{Tr}_d(c)} \sum_{i=0}^{m-1} \gamma_i a^{t_i} b^{p^{ni}}.
\]
Then
\[
x^{p^n} = \frac{1}{\text{Tr}_d(c)} \sum_{i=0}^{m-1} \gamma_i^{p^n} (a^{t_i})^{p^n} b^{p^{n(i+1)}}.
\]
For \(0 \leq i \leq m-2 \) we have
\[
(a^{t_i})^{p^n} = (a^{p^{n+1}} + \ldots + p^{n(m-1)})^{p^n} = a^{t_{i+1}}.
\]
For \(i = m-1 \), \((a^{s_m-1})^{p^n} = 1 \). We thus have
\[
x^{p^n} = \frac{\gamma_{m-1}}{\text{Tr}_d(c)} b^{p^{nm}} + \frac{a}{\text{Tr}_d(c)} \sum_{i=0}^{m-1} \gamma_i^{p^n} a^{t_{i+1}} b^{p^{n(i+1)}}
\]
\[
= b + \frac{a}{\text{Tr}_d(c)} \sum_{i=1}^{m-1} \gamma_i^{p^n} a^{t_i} b^{p^{ni}}
\]
as \(\gamma_{m-1} = \text{Tr}_d(c) \) from Lemma 1. We proceed with the calculation of \(x^{p^n} - ax \):
\[
x^{p^n} - ax = b + \frac{a}{\text{Tr}_d(c)} \sum_{i=1}^{m-1} \gamma_i^{p^n} a^{t_i} b^{p^{ni}} - \frac{a}{\text{Tr}_d(c)} \sum_{i=0}^{m-1} \gamma_i^{p^n} a^{t_i} b^{p^{ni}}
\]
\[
= b + \frac{a}{\text{Tr}_d(c)} \sum_{i=1}^{m-1} (\gamma_{i-1} - \gamma_i) a^{t_i} b^{p^{ni}} - \frac{a\gamma_0}{\text{Tr}_d(c)} a^{t_0} b.
\]
Now \(\gamma_0 = c \) and for \(1 \leq i \leq m-1 \) we have
\[
\gamma_{i-1} - \gamma_i = \sum_{j=0}^{i-1} \epsilon^{p^{nj+1}} - \sum_{j=0}^{i} \epsilon^{p^{nj}} = \sum_{j=1}^{i} \epsilon^{p^{nj}} - \sum_{j=0}^{i} \epsilon^{p^{nj}} = -c.
\]
Therefore
\[
x^{p^n} - ax = b - \frac{ac}{\text{Tr}_d(c)} \sum_{i=0}^{m-1} a^{t_i} b^{p^{ni}} = b - \frac{ac}{\text{Tr}_d(c)} \beta_{m-1}
\]
and as \(\beta_{m-1} = 0 \) we have \(x \) is a root of \(f \).

From Lemma 1, \(\alpha_{m-1} = N_q(a) = 1 \) where \(N_q \) is the norm function from \(\mathbb{F}_{p^k} \) onto \(\mathbb{F}_{p^d} \). From [3], \(N_q(a) = 1 \) if and only if \(a = \kappa^{p^{d-1}} \) for some \(\kappa \in \mathbb{F}_q^* \). Since \(\gcd(p^n - 1, q - 1) = p^d - 1 \), then \(p^n - 1 = (p^d - 1)t \) where \((t, q - 1) = 1 \). In other words, there exists a \(\tau \in \mathbb{F}_q^* \) satisfying \(\tau^{p^n - 1} = \kappa^{p^{d-1}} = a \). It follows that \(x + \delta \tau \) is a root of \(f \) for each \(\delta \in \mathbb{F}_{p^d} \).
From Lemma 2 there are at most p^d roots of f so we have obtained them all. \hfill \Box

In [2] the trinomial $g(X) = X^{p^n} - X - b$, where $b \in \mathbb{F}_q^*$, is considered. It is shown that g has no roots when $\text{Tr}_d(b) \neq 0$ and p^d roots when $\text{Tr}_d(b) = 0$. The final theorem of [2] aims to give a root of g when k/d is odd but the root given is instead a root of the polynomial $h(X) = X^{p^n} + X - b$ (in addition to this error, there is also a misprint in the statement of the theorem). We note that the proof given in [2] makes implicit use of Lemma 1. The root given in [2] can be shown to agree with that given by Theorem 3 by a direct calculation. The root constructed above when $\alpha_{m-1} \neq 1$ coincides with [4, Theorem 1] for the case n divides k.

The following corollary is easily obtained from Theorem 3.

Corollary 4. Let $q = p^k$, n be a positive integer and $f(X) = X^{p^n} - aX - b$ where $a \in \mathbb{F}_q^*$ and $b \in \mathbb{F}_q$. Set $l = \text{lcm}(k, n)$. The splitting field of f is \mathbb{F}_{p^l}, where l^t is the smallest integer for which $\alpha_{(lt/n)-1} = 1$ and $\beta_{(lt/n)-1} = 0$.

References

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, U.S.A.

E-mail address: coulter@math.udel.edu

E-mail address: marie@math.udel.edu