ON THE NUMBER OF DISTINCT VALUES OF A CLASS OF FUNCTIONS OVER A FINITE FIELD

ROBERT S. COULTER AND REX W. MATTHEWS

Abstract. Several authors have recently shown that a planar function over a finite field of order \(q \) must have at least \((q + 1)/2 \) distinct values. In this note this result is extended by weakening the hypothesis significantly and strengthening the conclusion. We also give an algorithm for determining whether a given bivariate polynomial \(\phi(X,Y) \) can be written as \(f(X + Y) - f(X) - f(Y) \) for some polynomial \(f \). Using the ideas of the algorithm, we then show a Dembowski-Ostrom polynomial is planar over a finite field of order \(q \) if and only if it yields exactly \((q + 1)/2 \) distinct values under evaluation; that is, it meets the lower bound of the image size of a planar function.

1. Introduction and notation

Throughout \(\mathbb{F}_q \) denotes the finite field of order \(q = p^e \), \(p \) a prime. The classical notation \(\mathbb{F}_q[X] \) and \(\mathbb{F}_q[X,Y] \) is used to denote the rings of polynomials over \(\mathbb{F}_q \) in \(X \) and \(X \) and \(Y \), respectively. The standard trace mapping from \(\mathbb{F}_q \) to \(\mathbb{F}_p \) is denoted \(\text{Tr} \). Let \(\omega \) be a primitive \(p \)-th root of unity. Recall that the canonical additive character, \(\chi_1 \), of \(\mathbb{F}_q \) is defined by \(\chi_1(x) = \omega^{\text{Tr}(x)} \) for any \(x \in \mathbb{F}_q \), and that all additive characters of \(\mathbb{F}_q \) are given by \(\chi_h(x) = \chi_1(hx) \) for any \(h \in \mathbb{F}_q \). For any polynomial \(f \in \mathbb{F}_q[X] \), the Weil sum of \(f \) under \(\chi_h \) is denoted by \(S_h(f) \); that is,

\[
S_h(f) = \sum_{x \in \mathbb{F}_q} \chi_h(f(x)).
\]

Let \(f \in \mathbb{F}_q[X] \). Define the difference operator, \(\Delta_f(X,Y) \), to be the bivariate polynomial given by \(\Delta_f(X,Y) = f(X + Y) - f(X) - f(Y) \). Let \(V(f) \) denote the number of distinct values \(f(x), x \in \mathbb{F}_q \). The polynomial \(f \) is called a permutation polynomial over \(\mathbb{F}_q \) if \(V(f) = q \). The polynomial \(f \) is called a planar function over \(\mathbb{F}_q \) if for every non-zero \(a \in \mathbb{F}_q \), the polynomial \(\Delta_f(X,a) \) is a permutation polynomial over \(\mathbb{F}_q \). It is easily seen that no function can be planar over a field of characteristic 2. Planar functions were introduced by Dembowski and Ostrom [6], where they were used to construct affine planes. They are also closely connected to commutative semifields [3] and difference sets [7].

For \(n \in \mathbb{N} \) and \(p \) prime, define \(w_p(n) \) to be the \(p \)-weight of \(n \); that is, if \(n = \sum_i a_i p^i \) is the base \(p \) expansion of \(n \), then \(w_p(n) = \sum_j a_i \). A polynomial \(f \in \mathbb{F}_q[X] \) is called a linearised polynomial if each non-zero term \(X^n \) of \(f \) satisfies \(w_p(n) = 1 \). Under evaluation, linearised polynomials induce homomorphisms of the additive group of the field, and any such homomorphism can be represented by a linearised polynomial. Consequently, they have been studied in great depth, see [11] for more information.

A polynomial \(f \in \mathbb{F}_q[X] \) is called a Dembowski-Ostrom (or DO) polynomial if each non-zero term \(X^n \) of \(f \) satisfies \(w_p(n) = 2 \). When \(q \) is odd, DO polynomials
induce even functions under evaluation and so $V(f) \leq (q + 1)/2$ in such cases. Dembowski-Ostrom polynomials play a significant role in the study of planar functions. It was conjectured that any planar function over a finite field was equivalent to a DO polynomial, give or take a linearised polynomial. Though the conjecture was shown to be false in characteristic 3 by the authors [5], it remains open for all larger characteristics. The significance of planar DO polynomials was further underlined in [3], where it was shown that there is a one-to-one correspondence between commutative presemifields and planar DO polynomials.

Recently, Kyureghyan and Pott [10], and Qiu et al [12] have independently shown that if f is a planar function over \mathbb{F}_q, then $V(f) \geq (q + 1)/2$. We show this is, in fact, a consequence of a far weaker condition, a condition which is necessary but clearly not sufficient for a polynomial f to be planar, see Section 2. Next, we give an algorithm for determining whether a given polynomial $\phi(X,Y)$ satisfies $\phi = \Delta f$ for some polynomial f. The paper ends by showing that $V(f) = (q + 1)/2$ is a necessary and sufficient condition for a DO polynomial to be planar over \mathbb{F}_q.

2. The number of distinct images

Theorem 1. Let $f \in \mathbb{F}_q[X]$ be a polynomial for which $|S_h(f)| = q^{1/2}$ for all $h \neq 0$. Then $M_1(f) \geq 1$ and

$$M_1(f) + M_2(f) \geq \frac{q + 1}{2},$$

where $M_r(f)$ is the number of $y \in \mathbb{F}_q$ having r pre-images under the function induced by f. Moreover, equality holds if and only if $M_1(f) = 3M_3(f) + 1$ and $M_r(f) = 0$ for all $r \geq 4$.

Proof. Define $N(f)$ to be the number of $(x,y) \in \mathbb{F}_q \times \mathbb{F}_q$ satisfying $f(x) = f(y)$. For ease of notation, set $d = \text{Degree}(f)$. The following identities are clear:

(i) $V(f) = \sum_{r=1}^d M_r(f)$.
(ii) $q = \sum_{r=1}^d rM_r(f)$.
(iii) $N(f) = \sum_{r=1}^d r^2 M_r(f)$.

It follows from the orthogonality relations of characters that

$$qN(f) = \sum_{h \in \mathbb{F}_q} \sum_{x \in \mathbb{F}_q} \sum_{y \in \mathbb{F}_q} \chi_1(h(f(x) - f(y)))$$

$$= \sum_{h \in \mathbb{F}_q} \sum_{x \in \mathbb{F}_q} \chi_h(f(x)) \sum_{y \in \mathbb{F}_q} \chi_h(-f(y))$$

$$= \sum_{h \in \mathbb{F}_q} \sum_{x \in \mathbb{F}_q} \chi_h(f(x)) \sum_{y \in \mathbb{F}_q} \chi_h(f(y))$$

$$= \sum_{h \in \mathbb{F}_q} |S_h(f)|^2.$$

Now suppose $|S_h(f)| = q^{1/2}$ for all $h \neq 0$. Immediately $N(f) = 2q - 1$. Combining identities (ii) and (iii) yields

$$M_1(f) - 1 = \sum_{r=3}^d (r^2 - 2r) M_r(f),$$
from which $M_1(f) \geq 1$ is forced. Further, $M_1(f) - 1 \geq \sum_{r=3}^{d} rM_r(f)$, so that
\[
2M_1(f) + 2M_2(f) - 1 \geq \sum_{r=1}^{d} rM_r(f) = q,
\]
establishing the claim.(0.03,0.11) Note for equality to hold, $M_r(f) = 0$ for $r > 3$, and so $M_1(f) - 1 = 3M_3(f)$, completing the proof. \hfill \Box

By [4], Theorem 2.3, a polynomial $f \in \mathbb{F}_q[X]$ is planar over \mathbb{F}_q if and only if $|S_h(f(x) + \lambda x)| = q^{1/2}$ for all $h, \lambda \in \mathbb{F}_q$, $h \neq 0$. The theorem therefore holds for planar functions, in particular. That the hypothesis of Theorem 1 holds for (mod p) prime fields, the only case for which planar functions have been classified, gives additional proof that Theorem 1 holds for functions other than planar functions. Since any planar function over \mathbb{F}_p is necessarily equivalent to a quadratic (see any of [8], [9], [13]), the number of planar functions over \mathbb{F}_p is $p^2(p - 1)$. On the other hand, Cavor [1] shows that the total number T of functions f on \mathbb{F}_p for which $|S_h(f)| = p^{1/2}$ is given by
\[
T = \frac{2p \cdot p!}{2^{(p-1)/2}}.
\]
Since $V(f) \geq M_1(f) + M_2(f)$, the following corollary is immediate.

Corollary 2. Let $f \in \mathbb{F}_q[X]$ be a polynomial for which $|S_h(f)| = q^{1/2}$ for all $h \neq 0$. Then $V(f) \geq (q + 1)/2$, with equality holding if and only if $M_1(f) = 1$, $M_2(f) = (q - 1)/2$, and $M_r(f) = 0$ for all $r \geq 3$.

Note that when equality holds in the corollary, without loss of generality, the polynomial $f \in \mathbb{F}_q[X]$ can be assumed to satisfy $f(0) = 0$ and to act 2 to 1 on the non-zero elements of \mathbb{F}_q. Such a function is called a 2-1 function. We shall return to such functions at the end of the following section.

3. The difference operator and planar DO polynomials

For $n \in \mathbb{N}$ and p prime, define $\nu_p(n)$ to be the p-order of n. Any term $X^tY^s \in \mathbb{F}_q[X,Y]$ is defined to be p-admissible if $\nu_p(s + t) = \min(\nu_p(s), \nu_p(t))$. We say $\phi \in \mathbb{F}_q[X,Y]$ is p-admissible if each non-zero term of ϕ is p-admissible.

Define an equivalence relation \approx on $\mathbb{F}_q[X]$ by $f \approx g$ if and only if $f - g$ is a linearised polynomial. We say f is L-normalised if f contains no linearised term. For any $f \in \mathbb{F}_q[X]$ there exists a unique L-normalised polynomial g with $f \approx g$. Clearly f is linearised if and only if $f \approx 0$. Equivalently, $\Delta_f(X,Y) = 0$ if and only if $f \approx 0$.

If $f(X) = \sum_i c_i X^i$ has no term X^t with $t \equiv -1$ (mod p), then define the antiderivative $\Lambda f(X)$ to be
\[
\Lambda f(X) = \sum_i c_i X^{i+1}/(i + 1).
\]
Given any polynomial f, set $g(X) = f'(X)$, the derivative of f. Then Λg is the unique L-normalised polynomial satisfying $f = \Lambda g$.

We are interested in solving the following problem:
Let \(\phi \in \mathbb{F}_q[X,Y] \). Describe an algorithm which will determine whether there exists a polynomial \(f \in \mathbb{F}_q[X] \) with \(\Delta_f = \phi \). If this returns TRUE then return \(f \) and indicate whether \(f \) is a DO polynomial.

We begin by presenting an algorithm which produces a candidate for such an \(f \).

Given \(\phi \in \mathbb{F}_q[X,Y] \).

Step 1. If \(\phi(X,Y) \neq \phi(Y,X) \), then return FALSE.

Step 2. Write \(\phi(X,Y) \) as a sum \(\psi_i(X,Y) \) where \(\psi_i \) is the sum of the non-zero terms of \(\phi \) whose total degree satisfies \(p \)-order \(i \). Define \(\phi_i \) by \(\psi_i = \phi_i^p \).

Step 3. For each \(i > 0 \), if \(\phi_i \) has a non-constant term with \(X \)-degree or \(Y \)-degree 0, then return FALSE.

Step 4. For each \(i > 0 \), if \(\phi_i \) is not \(p \)-admissible, then return FALSE.

Step 5. For each \(i \), let \(Y \mathcal{g}_i(X) \) be the sum of the terms whose degree in \(Y \) is 1. Let \(f_i(X) \) be the unique \(L \)-normalised antiderivative of \(g_i \). Verify \(f_i(X+Y) - f_i(Y) = \phi_i(X,Y) \). If not, return FALSE.

Step 6. Set \(f(X) = \sum_i f_i^p \). Return TRUE. Note that \(f \) is a DO polynomial if and only if \(g_i(X) \) is a linearised polynomial for each \(i \).

Justification of algorithm: Exit points returning FALSE correspond to necessary conditions. If we write \(f_i(X+Y) = \sum_{j \neq i} g_{i,j}(X)Y^j \), then \(g_i(X) = g_{i,1}(X) = f_i(X) \). From the conditions on \(f_i(X) \) it follows that \(f_i(X) = A \mathcal{g}_i(X) \), which uniquely determines \(f \). If \(f \) is a DO polynomial, then for each \(i \), \(f_i(X) = XL_i(X) \), where \(L_i(X) \) is linearised. Hence \(f_i(X+Y) - f_i(Y) = (X+Y)L_i(X+Y) - XL_i(X) - YL_i(Y) \), and the coefficient of \(Y \) is \(L_i(X) \). If \(g_i(X) \) is linearised, then \(f_i(X) = A \mathcal{g}_i(X) = X \mathcal{g}_i(X) \) and \(f \) is a DO polynomial.

The ideas laid out in the algorithm and its justification lead us to a short proof of the following theorem.

Theorem 3. Let \(f \in \mathbb{F}_q[X] \) be a Dembowski-Ostrom polynomial. Then \(f \) is planar over \(\mathbb{F}_q \) if and only if \(f \) is a 2-1 function. Equivalently, \(f \) is planar over \(\mathbb{F}_q \) if and only if \(V(f) = (q + 1)/2 \).

Proof. Write \(f(X) = \sum_i f_i^q(X) \). Then each \(f_i(X) \) has the shape \(XL_i(X) \), with \(L_i(X) \) a linearised polynomial. Adopting the notation of the algorithm, set \(\phi = \Delta f \). So \(\phi_i(X,Y) = YL_i(X) + XL_i(Y) \). Now make the change of variable \(X = U + V \), \(Y = U - V \). Then

\[
\phi_i(X,Y) = (U - V)L_i(U + V) + (U + V)L_i(U - V)
\]

\[
= 2(U L_i(U) - V L_i(V))
\]

\[
= 2(f_i(U) - f_i(V)),
\]

and so \(\phi(X,Y) = 2(f(U) - f(V)) \).

The planarity condition is that \(\phi(X,Y) \) has all its zeros on the curve \(XY = 0 \). In \((U,V) \) coordinates this translates to all zeros of \(f(U) - f(V) \) lying on the curve \(U^2 - V^2 = 0 \), or that \(f(U) = f(V) \) implies \(U = V \) or \(U = -V \). Since \(f \) is an even function, this implies that \(f \) is a 2-1 function.

Conversely, if \(f \) is a 2-1 function, we need to show that \(\phi(X,Y) \) has all its zeros on \(XY = 0 \). It suffices to show \(\phi(X,Y) \) has \(2q - 1 \) zeros or that \(f(U) - f(V) \) has \(2q - 1 \) zeros. But if \(f(U) = c, c \neq 0 \), then \(f(-U) = c \), so \(c \) has exactly two
ON THE NUMBER OF DISTINCT VALUES OF A CLASS OF FUNCTIONS OVER A FINITE FIELD

pre-images. Consequently \(f(U) - f(V) \) has \(1 + 2((q - 1)/2) = 2q - 1 \) zeros, as required. \(\square \)

We note that each \(f_i \) may be written as \(X^2 h_i(X^2) \) where \(h_i(X^2) = L_i(X)/X \), so \(f_i(X) = g_i(X) \) with \(g_i(X) = Xh_i(X) \). Then \(f(X) = g(X^2) \) where \(g(X) = \sum_i g_i(X) \). If \(g(X) \) is a permutation polynomial, then \(f \) is 2-1, but this is not a necessary condition. Let \(\zeta \) be a primitive element of \(\mathbb{F}_{25} \). Set \(f_a(X) = X^6 + 2aX^2 \) where \(a = \zeta^{4i+1} \) for some integer \(i \), so \(g_a(X) = X^3 + 2aX \). Then \(f_a \) is planar over \(\mathbb{F}_{25} \) but \(g_a(X) \) is not a permutation polynomial.

Added in proof: We have been informed Theorem 3 has also been established recently by G. Weng and X. Zeng using methods distinct from ours.

References

