Review for FINAL. 3.1-3.3 Bisection method, Newton's method, Secant method. -Review problem: 3.1 #8; 3.2 #1, 9, 23; 3.3 #1, 2, 4. 4.1 Polynomial Interpolation. -Interpolating Polynomial: Lagrange Form -Interpolating Polynomial: Newton Form and Divided Differences -Review problems: #1, 8, 9 4.3 Estimating Derivatives. -First-Derivative Formulas via Taylor Series -Review problems:#1, 3, 8. 5.2 Trapezoid rule. -Description -Uniform spacing, Error Analysis and Recursive Trapezoid Formula -Review problems : #1, 2, 3, 5, 7 5.3 Romberg Algorithm. -Description, Algorithm Review problems : #1, 5, 11. 5.5 Gaussian quadrature formulas. -Description, Gaussian Nodes and Weights, Legendre Polynomials -Review problems : #1, 2a, 5, 12 6.1 Naive Gaussian Elimination. -Algorithm -Long operation Count -Review problems : #1, 7a, 7b 6.3 Tri-diagonal and banded systems. -Tridiagonal systems (algorithm) -Banded systems -definition -Review problems: #2a, 3, CP16 page 281 6.4 LU-Factorization. -Numerical Example -LU-Factorization theorem and algorithm -Solving Linear Systems using LU factorization -Review problems: # 1, 6a, 8 7.1 First degree and second degree splines. -Definitions -First degree spline accuracy theorem -Review problems: # 1, 9, 20 7.2 Natural cubic splines. -Definitions for cubic spline and natural cubic spline. -Review problems: # 1, 9, 12, 14 8.1 Taylor series methods for ODEs. -Taylor series method of higher order (algorithms). -Review problems: # 10, 11a, 12, CP8 8.2 Runge Kutta methods. -Runge Kutta method of order 2 -Review problems: #3, 4