A UNIFIED APPROACH FOR UZAWA ALGORITHMS

CONSTANTIN BACUTA

Abstract. We present a unified approach in analyzing Uzawa iterative algorithms for saddle point problems. We study the classical Uzawa method, the augmented Lagrangian method, and two versions of inexact Uzawa algorithms. The target application is the Stokes system, but other saddle point systems, e.g., arising from mortar methods or Lagrange multipliers methods, can benefit from our study. We prove convergence of Uzawa algorithms and find optimal rates of convergence in an abstract setting on finite or infinite dimensional Hilbert spaces. The results can be used to design multilevel or adaptive algorithms for solving saddle point problems. The discrete spaces do not have to satisfy the stability (LBB) condition.

University of Delaware, Department of Mathematics, 501 Ewing Hall 19716
E-mail address: bacuta@math.udel.edu

2000 Mathematics Subject Classification. 74S05, 74B05, 65N22, 65N55.

Key words and phrases. Uzawa algorithms, saddle point system, multilevel methods, augmented Lagrangian method, Stokes problem.

This work was supported by University of Delaware Research Foundation.