Review for the FINAL EXAM (12/16/05, 10:30-12:30PM). CHAPTER 2 Differential Equations. Sections 2.2, 2.3, 2.4 -First Order Linear Equations -Separation of Variables Method. Review problems: 2.2 # 2a-f, 5, 9, 10 2.4 # 1a-d, i-n, 6, 7 CHAPTER 9 Vector Space. Sections: 9.2-9.5 and 9.6-9.9 -Geometrical representation -Angle, Dot product - n-Space - Dot (inner) product norm and angle properties in n-Spaces. - Cauchy-Schwarz inequality - Orthogonal and Orthonormal sets. -Span and Subspace -Bases, Expansions, Dimension Review problems: 9.2 # 1, 2, 9 9.3 # 1, 3, 5, 6 9.4 # 2a, 2b 9.5 # 1ab, 7, 8, 9ab, 14. 9.7 # 1 ae, 3, 5ab. 9.8 # 3 acd, 4, 5. 9.9 # 1 ad, 2a, 4bh, 8ah, 9h. CHAPTER 10: Matrices and Linear Equations. Sections 102-10.6 -Matrices and Matrices Algebra, Transposes: properties -Special type of matrices: symmetric, skew symmetric, identity matrix, -Determinants: cofactor expansion, properties, row operation method. -Rank, REF of a matrix, applications to linear dependence and existence and uniqueness of linear systems. Review problems: 10.2 # 8ab, 11a, 12a, 21ac. 10.3 # 4a, 6, 7a, 9. 10.4 # 2a, 3a, 4a, 7, 9a, 10. 10.5 # 1 cde, 6a, 8ac, 15. 10.6 # 1agq, 2g, 5bd. CHAPTER 11: Eigenvalue Problem. Sections 11.2-11.4 -Know to find eigenvalues, eigenvectors, eigenspaces for square matrices of dimension two and three. -Eigenvalues/eigenvectors properties for symmetric matrices -Diagonalization 11.2 # 3bjk, 5acd, 6b, 9, 10, 11, 14. 11.3 #1 abc 11.4 # 1bf CHAPTER 3: Linear DE of Second Order and Higher -Linear dependence/independence of functions -Wronskian Condition for LI/LD -Homogeneous Equations. General solution for: constant coefficients Cauchy-Euler Equations -Non-homogeneous Equations. Undetermined Coefficients Variation of Parameters Review problems: 3.2 # 2b, 4a 3.4 # 4 a-h q r, 6 a-e. 3.6 # 1egk 3.7 # 2bckps, 4gms