Review for the FINAL EXAM II(Friday -12/16/05 1:00-3:00 PM). CHAPTER 1, Linear Equations and Matrices: Sections 1.2 - 1.5 -Matrix operations: properties, powers of a matrix. -Special type of matrices: symmetric, skew symmetric, identity matrix, partitioned matrices. -Nonsingular (invertible) matrices: properties. -Linear systems and inverses. -Review problems: 1.2 # 2, 8, 10, 11. 1.3 # 10, 22, 30, 41, 43. 1.4 # 8, 10, 32, 36 1.5 # 9, 12, 15, 18, 31, 32, 44. True or false (page 76) 1-9. CHAPTER 2, Solving Linear Systems: Section 2.1 and Section 2.2 -(REF) and Gauss Elimination Method -(RREF) and Gauss- Jordan Method -Finding the inverse of a matrix -Characterize Nonsingular matrices (Result on page 104) Review problems: 2.1 # 6, 7, 14, 22, 33. 2.2 # 8, 9, 10ab, 16, 18, 19, 20, 28, 30. True or false (page 122) 1-3 and 8-10. Quiz(page 122): 1, 2, 3, 4. CHAPTER 3, Real Vector Space. Sections: 3.2-3.5 and Section 3.8 -Vector Space: definition, properties -Subspace: definition, span, null space of a matrix. -Span and Linear dependence/ independence. -Basis and Dimension -Vector spaces of dimension n: properties, know how to find bases. -Rank of a matrix -Theorem 3.20 (page 210) - Rank Theorem (page 211) - Review problems: 3.3 # 4, 6, 8, 12bc, 14, 15, 28ab. 3.4 # 2a, 4a, 8, 15b, 16, 20, 22, 24. 3. 5 # 2b, 4b, 8a, 12, 18, 20b, 24b, 33, 30, 34. 3.8 # 13a, 17a, 26, 28, 29, 39. True or false (page 217) 7-12 and 14-16. Quiz (page 217): 3, 4, 5, 6, 7, 8, 10. CHAPTER 4, INNER PRODUCT SPACES. Sections: 4.1, 4.3, 4.4, 4.5 -Length, inner product and magnitude in 2D and 3D. - Inner product spaces. Definition, properties, distance, orthogonality, Cauchy-Schwarz inequality -The Gram-Schmidt Process - Projection formula and projection theorems ( Theorems 4.9, 4.10, 4.11) -Review problems: 4.1 # 10, 25, 27 4.3 # 10a, 16, 19, 30a, 32, 4.4 # 2, 8, 10, 13, 23. 4.5 # 2a, 13a, 20, 29 True or False 1-12, Quiz(page 286) 1, 2, 3, 6, 7, 8, 10. CHAPTER 6 Determinants. Section 1-5 -Determinants, Cofactor Expansion -Properties of determinants -determinants and matrix operations -Inverse of a matrix using cofactors, Theorem on page 388. -Cramers's Rule -Review problems: 6.2 # 7c,8, 9, 14, 16, 17, 24, 26a, 30. 6.3 # 3ab, 12; 6.4 # 2, 1; 6.5 #1, 3, 8. True or False 1-7, Quiz (page 392) 1, 2, 4, 5, 7, 8. CHAPTER 7 EIGENVALUES and EIGENVECTORS: Section 1 -eigenvalues, eigenvectors, eigenspaces of a matrix - Know to find the characteristic polynomial, the characteristic equation and - Bases for eigenspaces of a matrix. -When is a matrix diagonalizable? Know how to Diagonalize a matrix. - Orthogonal matrices. Diagonalization of symmetric matrices. -Review problems: 7.1 # 5ab, 7, 9bd, 17, 21, 22, 24ab. 7.2 # 6 bd, 8, 10ad, 12, 14a, 24 7.4 # 1,2a, 3, 4, 8, 9a, 15, 16, 19, 20 True or False (pages 492-493): 1-17. Quiz(Page 493) 5, 6, 7