The goal of this project is to learn how to program Jacobi and Gauss-Seidel algorithms, to do numerical experiments and to solve practical problems with MATLAB build in functions and with functions written by you.

For Part I and Part II: Consider the following tridiagonal system, and assume that the coefficient matrix is strictly diagonally dominant

\[
\begin{align*}
 d_1 x_1 + c_1 x_2 &= b_1 \\
 a_{k-1} x_{k-1} + d_k x_k + c_k x_{k+1} &= b_k, \quad \text{for } k = 2, 3, \ldots, n-1, \\
 a_{n-1} x_{n-1} + d_n x_n &= b_n
\end{align*}
\]

Part I

(i) Write a Jacobi algorithm and a Gauss-Seidel algorithm to solve a general tri-diagonal system. Your algorithms should efficiently use the “sparseness” of the coefficient matrix.

(ii) Write two MATLAB functions called \texttt{jac3diag} and \texttt{gs3diag} for the corresponding two algorithms from part (i). For both functions the input should be the three vectors \(a, d, c\) which define the tri-diagonal matrix, the initial guess \(x_0\) as a \(n \times 1\) vector, the \(n \times 1\) vector \(b\) which defines the right hand side of the system, the tolerance \(\delta\) (take \(\delta = 1e-12\)), and \(N_{max}\) the maximum number of iterations (take \(N_{max} = 100\)). As output, consider the \(n \times 1\) vector \(x\) which “solves” the system, and the number of iterations \(k\) performed by the algorithm. The algorithms should stop when \(err := \|x^{(k+1)} - x^{(k)}\|\) is smaller than \(\delta\) or, when the maximum number of iterations is achieved. Here, \(x^{(k)}\) and \(x^{(k+1)}\) are two consecutive iterations and \(\|x\| := \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}\) for \(x = (x_1, x_2, \ldots, x_n)^T \in \mathbb{R}^n\).

(iii) Debug your programs, by using the following example:

\[
\begin{align*}
 >> a &= 1:4 \\
 >> d &= 8*ones(1,5) \\
 >> c &= -1:-1:-4 \\
 >> A &= diag(a,-1) + diag(d,0) + diag(c,1) \\
 >> b &= [7 7 7 7 12]' \\
 >> x &= A \backslash b
\end{align*}
\]

Solve the above system \(Ax = b\) using your \texttt{jac3diag} or \texttt{gs3diag}. The answer should be the same. If not, go back and fix your program(s).

(iv) Solve the system (1) for \(a = \text{ones}(1,n-1), \quad d = 4*\text{ones}(1,n), \quad c = \text{ones}(1,n-1), \quad b = 3*\text{ones}(n,1), \quad \text{and } n = 50,\) using your \texttt{jac3diag} and \texttt{gs3diag}. Check the numerical solution by using the the function \texttt{testproj1.m} below.
function testproj1(n)
 tic
 a=ones(1, n-1); d=4*ones(1,n); c=ones(1, n-1);
b=3*ones(n,1); %Creats the RHS of the system (a)
A=diag(a,-1) +diag(d,0) +diag(c,1); %Builds the tridiagonal matrix A of (a)
xGE=A % Solve Ax=b by using the Gaussian Elimination.
error=norm(b-A*xGE) %verifies if xGE is a good approximation to x=inv(A)*b.
toc

After you copy testproj1.m in your working directory, to solve (a), just type >> testproj1(50).

(v) The commands tic and toc in testproj1.m measure the elapsed time needed to solve a tri-diagonal system \(Ax=b\) using the MATLAB \(-backslash\) (or the \(left matrix divide\) based on the Gaussian elimination algorithm). Use the commands tic and toc to test the elapsed time needed to solve the same tri-diagonal system with \(a=ones(1,n-1), d=4*ones(1,n), c=ones(1,n-1)\) and \(b=3*ones(n,1)\) by using \texttt{jac3diag}\ and \texttt{gs3diag}. Run numerical tests to compare the time needed by \texttt{jac3diag}, \texttt{gs3diag} and the \(-backslash\)-Gaussian elimination to solve the system for \(n=100,200,1000,2000\). For testing the time for \texttt{jac3diag} and \texttt{gs3diag} you might create function M-files similar with the testproj1.m function used for the \(-backslash\) solver. For what value \(n\) does the \(-backslash\) fails to work? (Use testproj1.m to answer this). Does \texttt{jac3diag} or \texttt{gs3diag} work for that value ? Comment on the results.

For Part I (ii)-(iv), attach the script files and the function M-files created by you. Provide the MATLAB commands used for each item. Comment on the results.

Part II: Practical Application. The system \(Ax=b\) considered in (1), with
\[A = \text{diag}(a, -1) + \text{diag}(d, 0) + \text{diag}(c, 1) \]
where \(a=ones(1,n-1), d=-2*ones(1,n), c=ones(1,n-1)\) describes the following application. An elastic band of length 1 is pinned down at the ends \(t=0\) and \(t=1\). At the \(n\) intermediate points \(t_1 = 1/(n+1), t_2 = 2/(n+1), \ldots, t_n = n/(n+1)\), the weights \(b_1, b_2, \ldots, b_n\) are suspended. This causes the elastic band to deflect, with the deflection at the the point \(t_k = k/(n+1)\) proportional to \(x_k\). The deflection vector \(x = [x_1, x_2, \ldots, x_n]^T\) can be determined as the exact solution of the system \(Ax=b\) with \(b=[b_1, b_2, \ldots, b_n]^T\).

(i) Take \(n=20\) and use \texttt{backslash} or \texttt{trisys} (from the class home page) to find the deflection \(x\) for constant weights \(b_k (b=ones(n,1))\). Plot the deflection vector against the nodes \(t_k\). To show the two end points where the deflection is zero, an efficient plotting command is
\[
\text{plot(linspace(0,1,n+2), [0; x(:); 0])}
\]
where \(x\) is the column vector which solves \(Ax=b\). Repeat the experiment with \(n=50\) and \(n=100\).

(ii) Take \(n=200\). Put unit weights on the left half of the band and zero weights on the right half \((b = [ones(100,1); zeros(100,1)])\) and determine the resulting deflection.

(iii) Take \(n=101\). Put equal weights on the middle 21 nodes, of the band (take e.g., \(b_{51} = 1/100\)), and zero weights on the rest of the nodes. Determine the resulting deflection.

(iv) Investigate other weights. Can you use your \texttt{jac3diag} or \texttt{gs3diag} to solve this problem?
For Part II provide the plots, the commands used to get the plots, and meaningful comments.

Extra-Credit = 10 Points. Write a function M-file to solve a general tridiagonal system (1) using SOR method. Your algorithms should efficiently use the “sparseness” of the coefficient matrix and have \(\omega \) as one of the input arguments. Use your “mySOR.m” to solve the system of Problem I-(iv). Find values \(\omega \) for which SOR performs better (fewer iterations to achieve a fixed tolerance say, \(\epsilon = 0.5 \times 10^{-9} \)) than Jacobi or GS iterations.

Note: The project should be well written and well commented. The length of the project should not exceed 4 pages, not counting the plots, the MATLAB files created by you, and the extra credit part. Neatness counts. *A (good) picture is worth a thousand words.*

A (good) comment is worth a thousand lines of MATLAB output. Save the trees.